Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 45(7): 3995-4005, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022947

RESUMEN

Danjiangkou Reservoir is a critical water source for the South-to-North Water Diversion Project, which harbors a diverse bacterioplankton community with varying depths, and the understanding of its nitrogen and phosphorus cycle and associated driving factors remains limited. In this study, we selected five ecological sites within Danjiangkou Reservoir and conducted metagenomics analysis to investigate the vertical distribution of bacterioplankton communities in the surface, middle, and bottom layers. Furthermore, we analyzed and predicted the function of nitrogen and phosphorus cycles, along with their driving factors. Our findings revealed the dominance of Proteobacteria, Actinobacteria, and Planctomycetes in the Danjiangkou Reservoir. Significant differences were observed in the structure of bacterioplankton communities across different depths, with temperature (T), oxidation-reduction potential (ORP), dissolved oxygen (DO), and Chla identified as primary factors influencing the bacterioplankton composition. Analysis of nitrogen cycle functional genes identified 39 genes, including gltB, glnA, gltD, gdhA, NRT, etc., which were involved in seven main pathways, encompassing nitrogen fixation, nitrification, denitrification, and dissimilatory nitrate reduction. Phosphorus cycle function gene analysis identified 54 genes, including pstS, ppx-gppA, glpQ, ppk1, etc., primarily participating in six main pathways, including organic P mineralization, inorganic P solubilization, and regulatory. Cluster analysis indicated that different depths were significant factors influencing the composition and abundance of nitrogen and phosphorus cycle functional genes. The composition and abundance of nitrogen and phosphorus cycle functional genes in the surface and bottom layers differed and were generally higher than those in the middle layer. Deinococcus, Hydrogenophaga, Limnohabitans, Clavibacter, and others were identified as key species involved in the nitrogen and phosphorus cycle. Additionally, we found significant correlations between nitrogen and phosphorus cycle functional genes and environmental factors such as DO, pH, T, total dissolved solids (TDS), electrical conductivity (EC), and Chla. Furthermore, the content of these environmental factors exhibited depth-related changes in the Danjiangkou Reservoir, resulting in a distinct vertical distribution pattern of bacterioplankton nitrogen and phosphorus cycle functional genes. Overall, this study sheds light on the composition, function, and influencing factors of bacterioplankton communities across different layers of Danjiangkou Reservoir, offering valuable insights for the ecological function and diversity protection of bacterioplankton in this crucial reservoir ecosystem.


Asunto(s)
Nitrógeno , Fósforo , Plancton , Fósforo/metabolismo , China , Nitrógeno/metabolismo , Plancton/genética , Plancton/metabolismo , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Proteobacteria/genética , Ciclo del Nitrógeno , Actinobacteria/genética , Actinobacteria/metabolismo , Genes Bacterianos
2.
Environ Sci Pollut Res Int ; 31(33): 45537-45552, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967850

RESUMEN

The synergistic remediation of heavy metal-contaminated soil by functional strains and biochar has been widely studied. However, the mechanisms by which urease-producing bacteria combine with pig manure biochar (PMB) to immobilize Cd and inhibit Cd absorption in vegetables are still unclear. In our study, the effects and mechanisms of PMB combined with the urease-producing bacterium TJ6 (TJ6 + PMB) on Cd adsorption were explored. The effects of TJ6 + PMB on the Cd content and pH of the leachate were also studied through a 56-day soil leaching experiment. Moreover, the effects of the complexes on Cd absorption and microbial mechanisms in lettuce were explored through pot experiments. The results showed that PMB provided strain TJ6 with a greater ability to adsorb Cd, inducing the generation of CdS and CdCO3, and thereby reducing the Cd content (71.1%) and increasing the pH and urease activity in the culture medium. TJ6 + PMB improved lettuce dry weight and reduced Cd absorption. These positive effects were likely due to (1) TJ6 + PMB increased the organic matter and NH4+ contents, (2) TJ6 + PMB transformed available Cd into residual Cd and decreased the Cd content in the leachate, and (3) TJ6 + PMB altered the structure of the rhizosphere bacterial and fungal communities in lettuce, increasing the relative abundances of Stachybotrys, Agrocybe, Gaiellales, and Gemmatimonas. These genera can promote plant growth, decompose organic matter, and release phosphorus. Interestingly, the fungal communities were more sensitive to the addition of TJ6 and PMB, which play important roles in the decomposition of organic matter and immobilization of Cd. In conclusion, this study revealed the mechanism by which urease-producing bacteria combined with pig manure biochar immobilize Cd and provided a theoretical basis for safe pig manure return to Cd-polluted farmland. This study also provides technical approaches and bacterial resources for the remediation of heavy metal-contaminated soil.


Asunto(s)
Cadmio , Carbón Orgánico , Lactuca , Estiércol , Contaminantes del Suelo , Ureasa , Cadmio/metabolismo , Carbón Orgánico/química , Animales , Ureasa/metabolismo , Porcinos , Contaminantes del Suelo/metabolismo , Bacterias/metabolismo , Suelo/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-38837920

RESUMEN

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.

4.
Microorganisms ; 12(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38792702

RESUMEN

The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.

5.
Environ Pollut ; 355: 124201, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38810675

RESUMEN

Combined microplastic and heavy metal pollution (CM-HP) has become a popular research topic due to the ability of these pollutants to have complex interactions. Plant growth-promoting rhizobacteria (PGPR) are widely used to alleviate stress from heavy metal pollution in plants. However, the effects and mechanisms by which these bacteria interact under CM-HP have not been extensively studied. In this study, we isolated and screened PGPR from CM-HP soils and analyzed the effects of these PGPR on sorghum growth and Cd accumulation under combined PVC+Cd pollution through pot experiments. The results showed that the length and biomass of sorghum plants grown in PVC+Cd contaminated soil were significantly lower than those grown in soils contaminated with Cd alone, revealing an enhancement in toxicity when the two contaminants were mixed. Seven isolated and screened PGPR strains effectively alleviated stress due to PVC+Cd contamination, which resulted in a significant enhancement in sorghum biomass. PGPR mitigated the decrease in soil available potassium, available phosphorus and alkali-hydrolyzable nitrogen content caused by combined PVC+Cd pollution and increased the contents of these soil nutrients. Soil treatment with combined PVC+Cd pollution and PGPR inoculation can affect rhizosphere bacterial communities and change the composition of dominant populations, such as Proteobacteria, Firmicutes, and Actinobacteria. PICRUSt2 functional profile prediction revealed that combined PVC+Cd pollution and PGPR inoculation affected nitrogen fixation, nitrification, denitrification, organic phosphorus mineralization, inorganic phosphorus solubilization and the composition and abundance of genes related the N and P cycles. The Mantel test showed that functional strain abundance, the diversity index and N and P cycling-related genes were affected by test strain inoculation and were significant factors affecting sorghum growth, Cd content and accumulation. This study revealed that soil inoculation with isolated and screened PGPR can affect the soil inorganic nutrient content and bacterial community composition, thereby alleviating the stress caused by CM-HP and providing a theoretical basis and data support for the remediation of CM-HP.


Asunto(s)
Cadmio , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Sorghum , Sorghum/microbiología , Contaminantes del Suelo/toxicidad , Cadmio/toxicidad , Suelo/química , Biodegradación Ambiental , Bacterias/metabolismo , Cloruro de Polivinilo
6.
Ecotoxicol Environ Saf ; 277: 116380, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677068

RESUMEN

The interaction between microplastics (MPs) and cadmium (Cd) poses a threat to agricultural soil environments, and their effects on plant growth and rhizosphere microbial community functions are not yet clear. In this study, energy sorghum was used as a test plant to investigate the effects of two types of MPs, polystyrene (PS) and polyethylene (PE), at different particle sizes (13 µm, 550 µm) and concentrations (0.1%, 1% w/w), and Cd, as well as their interactions, on the growth of sorghum in a soil-cultivation pot experiment. The results showed that the combined effects of MP and Cd pollution on the dry weight and Cd accumulation rate in sorghum varied depending on the type, concentration, and particle size of the MPs, with an overall trend of increasing stress from combined pollution with increasing Cd content and accumulation. High-throughput sequencing analysis revealed that combined MP and Cd pollution increased bacterial diversity, and the most significant increase was observed in the abundance-based coverage estimator (ACE), Shannon, and Sobs indices in the 13 µm 1% PS+Cd treatment group. Metagenomic analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed that 19 groups of metabolic pathways, including microbial metabolism and methane metabolism, differed significantly under combined MP and Cd pollution. Hierarchical clustering results indicated that Cd treatment and combined MP and Cd treatment affected the abundances of sorghum rhizosphere soil nitrogen (N) and phosphorus (P) cycling genes and that the type of MP present was an important factor affecting N and P cycling genes. The results of this study provide a basis for exploring the toxic effects of combined MP and Cd pollution and for conducting soil environmental risk assessments.


Asunto(s)
Cadmio , Microplásticos , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Sorghum , Sorghum/efectos de los fármacos , Sorghum/microbiología , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Suelo/química , Tamaño de la Partícula , Bacterias/efectos de los fármacos
7.
Huan Jing Ke Xue ; 45(2): 1161-1172, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471953

RESUMEN

With the vigorous development of agriculture in China, plastic mulch film and pesticides are widely used in agricultural production. However, the accumulation of microplastics (formed by the degradation of plastic mulch film) and pesticides in soil has also caused many environmental problems. At present, the environmental biological effects of microplastics or pesticides have been reported, but there are few studies on the combined effects on crop growth and the rhizosphere soil bacterial community. Therefore, in this study, the high density polyethylene microplastics (HDPE, 500 mesh) were designed to be co-treated with sulfonylurea herbicide chlorimuron-ethyl to study their effects on soybean growth. In addition, the effects of the combined stress of HDPE and chlorimuron-ethyl on soybean rhizosphere soil bacterial community diversity, structure composition, microbial community network, and soil function were investigated using high-throughput sequencing technology, interaction network, and PICRUSt2 function analysis to clarify the combined toxicity of HDPE and chlorimuron-ethyl to soybean. The results showed that the half-life of chlorimuron-ethyl in soil was prolonged by the 1% HDPE treatment (from 11.5 d to 14.3 d), and the combined stress of HDPE and chlorimuron-ethyl had more obvious inhibition effects on soybean growth than that of the single pollutant or control. The HiSeq 2 500 sequencing showed that the rhizosphere bacterial community of soybean was composed of 20 phyla and 312 genera under combined stress, the number of phyla and genera was significantly less than that of the control and single pollutant treatment, and the relative abundances of bacteria with potential biological control and plant growth-promoting characteristics (such as Nocardioides and Sphingomonas) were reduced. Alpha diversity analysis showed that the combined stress significantly reduced the richness and diversity of the soybean rhizosphere bacterial community, and Beta diversity analysis showed that the combined stress significantly changed the structure of the bacterial community. The dominant flora of the rhizosphere bacterial community were regulated, and the abundances of secondary functional layers such as amino acid metabolism, energy metabolism, and lipid metabolism were reduced under combined stress by the analysis of LEfSe and PICRUSt2. It was inferred from the network analysis that the combined stress of HDPE and chlorimuron-ethyl reduced the total number of connections and network density of soil bacteria, simplified the network structure, and changed the important flora species to maintain the stability of the network. The results above indicated that the combined stress of HDPE and chlorimuron-ethyl significantly affected the growth of soybean and changed the rhizosphere bacterial community structure, soil function, and network structure. Compared with that of the single pollutant treatment, the potential risk of combined stress was greater. The results of this study can provide guidance for evaluating the ecological risks of polyethylene microplastics and chlorimuron-ethyl and for the remediation of contaminated soil.


Asunto(s)
Contaminantes Ambientales , Herbicidas , Pirimidinas , Compuestos de Sulfonilurea , Polietileno/metabolismo , Polietileno/farmacología , Rizosfera , Glycine max , Microplásticos , Plásticos , Bacterias , Suelo , Microbiología del Suelo
8.
J Hazard Mater ; 469: 134085, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522197

RESUMEN

Composite pollution by microplastics and heavy metals poses a potential threat to the soilplant system and has received increasing attention. Plant growth-promoting bacteria (PGPB) have good application potential for the remediation of combined microplastic and heavy metal pollution, but few related studies exist. The present study employed a pot experiment to investigate the effects of inoculation with the PGPB Bacillus sp. SL-413 and Enterobacter sp. VY-1 on sorghum growth and Cd accumulation under conditions of combined cadmium (Cd) and polyethylene (PE) pollution. Cd+PE composite contamination led to a significant reduction in sorghum length and biomass due to increased toxicity. Inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 alleviated the stress caused by Cd+PE complex pollution, and the dry weight of sorghum increased by 25.7% to 46.1% aboveground and by 12.3% to 45.3% belowground. Bacillus sp. SL-413 and Enterobacter sp. VY-1 inoculation increased the Cd content and accumulation in sorghum and improved the phytoremediation efficiency of Cd. The inoculation treatment effectively alleviated the nutrient stress caused by the reduction in soil mineral nutrients due to Cd+PE composite pollution. The composition of the soil bacterial communities was also affected by the Cd, Cd+PE and bacterial inoculation treatments, which affected the diversity of the soil bacterial communities. Network analyses indicated that bacterial inoculation regulated the interaction of rhizospheric microorganisms and increased the stability of soil bacterial communities. The Mantel test showed that the changes in the soil bacterial community and function due to inoculation with Bacillus sp. SL-413 and Enterobacter sp. VY-1 were important factors influencing sorghum growth and Cd remediation efficiency. The results of this study will provide new evidence for the research on joint plantmicrobe remediation of heavy metal and microplastic composite pollution.


Asunto(s)
Bacillus , Metales Pesados , Contaminantes del Suelo , Sorghum , Cadmio/análisis , Biodegradación Ambiental , Plásticos , Polietileno , Suelo , Rizosfera , Microplásticos , Metales Pesados/toxicidad , Metales Pesados/análisis , Enterobacter , Contaminantes del Suelo/análisis
9.
Plants (Basel) ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337926

RESUMEN

The reservoir coastal zone is the transitional zone between the terrestrial ecosystem and the aquatic ecosystem. Soil is an essential part of the terrestrial ecosystem and vital for life on Earth. To understand the composition and diversity of the soil eukaryotic microbial community under the background of artificial planting of Chrysopogon zizanioides in various habitats after reservoir construction, including the original habitat (OH), the hydro-fluctuation belt (HB), and the road slope (RS), and to analyze the interaction between the main groups of eukaryotic microorganisms, this study conducted 18S rDNA amplification high-throughput sequencing of the soil eukaryotic microbial community. The study found that the dominant phylum of eukaryotic microorganisms in the three habitats was consistent, but there were significant differences in the community and diversity of eukaryotic microorganisms in the three habitats. The differences in fungal communities between sample sites were greater than those of soil microfauna. Correlation analysis showed that nitrogen, phosphorus, and organic matter were significantly correlated with eukaryotic microbial diversity, with alkaline-hydrolyzed nitrogen and total phosphorus significantly correlated with fungal communities and pH and water content correlated with soil microfauna. Co-occurrence network analysis found that the interactions between fungi and the correlation between fungi and soil microfauna dominated the eukaryotic microbial community, and the interactions between eukaryotic microbes in different habitats were dominated by positive correlations. After the construction of the reservoir, the newly formed hydro-fluctuation belt reduced the types of interrelationships between fungi and microfauna compared to the original habitat. The road slope provided protection of the supporting project for the reservoir construction, although there was also planted vegetation. Eukaryotic microbes declined significantly due to the damage to and loss of the organic layer, and the decline in microfauna was the most significant, resulting in a simple structure of the soil food web, which affects the function and stability of the soil ecosystem.

10.
Huan Jing Ke Xue ; 45(1): 480-488, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38216497

RESUMEN

Microplastics can become potential transport carriers of other environmental pollutants (such as heavy metals), so the combined pollution of microplastics and heavy metals has attracted increasing attention from researchers. To explore the mechanism of plant growth-promoting bacteria VY-1 alleviating the combined pollution stress of heavy metals and microplastics in sorghum, the effects of inoculation on biomass and accumulation of heavy metals in sorghum were analyzed using a hydroponics experiment, and the effects of inoculation on gene expression in sorghum were analyzed via transcriptomics. The results showed that the combined pollution of polyethylene (PE) and cadmium (Cd) decreased the dry weight of above-ground and underground parts by 17.04% and 10.36%, respectively, compared with that under the single Cd pollution, which showed that the combined toxicity effect of the combined pollution on plant growth was enhanced. The inoculation of plant growth-promoting bacteria VY-1 could alleviate the toxicity of Cd-PE combined pollution and increase the length of aboveground and underground parts by 33.83% and 73.21% and the dry weight by 56.64% and 33.44%, respectively. Transcriptome sequencing showed that 904 genes were up-regulated after inoculation with VY-1. Inoculation with growth-promoting bacteria VY-1 could up-regulate the expression of several genes in the auxin, abscisic acid, flavonoid synthesis, and lignin biosynthesis pathways, which promoted the response ability of sorghum under Cd-PE combined pollution stress and improved its resistance. The above results indicated that plant growth-promoting bacteria could alleviate the stress of heavy metal and microplastic combined pollution by regulating plant gene expression, which provided a reference for plant-microbial joint remediation of heavy metal and microplastic combined pollution.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Sorghum , Cadmio/análisis , Microplásticos , Plásticos , Sorghum/genética , Sorghum/metabolismo , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Bacterias/genética , Bacterias/metabolismo , Perfilación de la Expresión Génica , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Suelo
11.
Brain Res Bull ; 207: 110881, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232779

RESUMEN

Continuous electroencephalogram (cEEG) plays a crucial role in monitoring and postoperative evaluation of critical patients with extensive EEG abnormalities. Recently, the temporal variability of dynamic resting-state functional connectivity has emerged as a novel approach to understanding the pathophysiological mechanisms underlying diseases. However, little is known about the underlying temporal variability of functional connections in critical patients admitted to neurology intensive care unit (NICU). Furthermore, considering the emerging field of network physiology that emphasizes the integrated nature of human organisms, we hypothesize that this temporal variability in brain activity may be potentially linked to other physiological functions. Therefore, this study aimed to investigate network variability using fuzzy entropy in 24-hour dynamic resting-state networks of critical patients in NICU, with an emphasis on exploring spatial topology changes over time. Our findings revealed both atypical flexible and robust architectures in critical patients. Specifically, the former exhibited denser functional connectivity across the left frontal and left parietal lobes, while the latter showed predominantly short-range connections within anterior regions. These patterns of network variability deviating from normality may underlie the altered network integrity leading to loss of consciousness and cognitive impairment observed in these patients. Additionally, we explored changes in 24-hour network properties and found simultaneous decreases in brain efficiency, heart rate, and blood pressure between approximately 1 pm and 5 pm. Moreover, we observed a close relationship between temporal variability of resting-state network properties and other physiological indicators including heart rate as well as liver and kidney function. These findings suggest that the application of a temporal variability-based cEEG analysis method offers valuable insights into underlying pathophysiological mechanisms of critical patients in NICU, and may present novel avenues for their condition monitoring, intervention, and treatment.


Asunto(s)
Imagen por Resonancia Magnética , Neurología , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Electroencefalografía/métodos
12.
Huan Jing Ke Xue ; 44(12): 6973-6981, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098420

RESUMEN

The combined pollution of microplastics and heavy metals can potentially interact. This may have an important impact on the growth and development of plants and the rhizosphere microbial community and function. In this study, the effects of heavy metal cadmium combined with different types of microplastics(PE and PS), different particle sizes(13 µm and 550 µm), and different concentrations(0.1% and 1%) on Pennisetum hydridum growth were studied under pot conditions. The results showed that the effects of the combined pollution of MPs and Cd on plant dry weight and Cd accumulation varied with different types, concentrations, and particle sizes of MPs, and the combined pollution stress increased, whereas the Cd content and Cd accumulation decreased. Metagenomic analysis showed that the combined contamination of MPs and Cd could change the composition of the bacterial community and reduce bacterial diversity, among which the ACE index and Chao1 index in the 550 µm 0.1% PE+Cd treatment group were the most significant. Metagenomic analysis of microbial species function showed that the main functional groups were metabolism, amino acid transport and metabolism, energy generation and conversion, and signal transduction mechanisms. Compared with that under single Cd pollution, the addition of MPs could change the gene abundance of functional groups such as metabolism, amino acid transport and metabolism, and energy generation and conversion, and the effects of different MPs types, concentrations, and particle sizes varied. In this study, metagenomics and amplification sequencing were used to analyze the effects of the combined pollution of MPs and Cd on the bacterial community and function in P. hydridum in order to provide basic data and scientific basis for the ecotoxicological effects of the combined heavy metal pollution of MPs and its biological remediation.


Asunto(s)
Metales Pesados , Microbiota , Pennisetum , Contaminantes del Suelo , Cadmio/análisis , Microplásticos/análisis , Suelo/química , Pennisetum/metabolismo , Plásticos , Rizosfera , Metales Pesados/análisis , Bacterias/metabolismo , Aminoácidos , Contaminantes del Suelo/análisis
13.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-966619

RESUMEN

Background/Aims@#The utility of Baveno-VII criteria of clinically significant portal hypertension (CSPH) to predict decompensation in compensated advanced chronic liver disease (cACLD) patient needs validation. We aim to validate the performance of CSPH criteria to predict the risk of decompensation in an international real-world cohort of cACLD patients. @*Methods@#cACLD patients were stratified into three categories (CSPH excluded, grey zone, and CSPH). The risks of decompensation across different CSPH categories were estimated using competing risk regression for clustered data, with death and hepatocellular carcinoma as competing events. The performance of “treating definite CSPH” strategy to prevent decompensation using non-selective beta-blocker (NSBB) was compared against other strategies in decision curve analysis. @*Results@#One thousand one hundred fifty-nine cACLD patients (36.8% had CSPH) were included; 7.2% experienced decompensation over a median follow-up of 40 months. Non-invasive assessment of CSPH predicts a 5-fold higher risk of liver decompensation in cACLD patients (subdistribution hazard ratio, 5.5; 95% confidence interval, 4.0–7.4). “Probable CSPH” is suboptimal to predict decompensation risk in cACLD patients. CSPH exclusion criteria reliably exclude cACLD patients at risk of decompensation, regardless of etiology. Among the grey zone, the decompensation risk was negligible among viral-related cACLD, but was substantially higher among the non-viral cACLD group. Decision curve analysis showed that “treating definite CSPH” strategy is superior to “treating all varices” or “treating probable CSPH” strategy to prevent decompensation using NSBB. @*Conclusions@#Non-invasive assessment of CSPH may stratify decompensation risk and the need for NSBB in cACLD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA