Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
J Am Chem Soc ; 146(12): 7950-7955, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38483267

Single-site catalysts (SSCs) achieve a high catalytic performance through atomically dispersed active sites. A challenge facing the development of SSCs is aggregation of active catalytic species. Reducing the loading of these sites to very low levels is a common strategy to mitigate aggregation and sintering; however, this limits the tools that can be used to characterize the SSCs. Here we report a sintering-resistant SSC with high loading that is achieved by incorporating Anderson-Evans polyoxometalate clusters (POMs, MMo6O24, M = Rh/Pt) within NU-1000, a Zr-based metal-organic framework (MOF). The dual confinement provided by isolating the active site within the POM, then isolating the POMs within the MOF, facilitates the formation of isolated noble metal sites with low coordination numbers via exsolution from the POM during activation. The high loading (up to 3.2 wt %) that can be achieved without sintering allowed the local structure transformation in the POM cluster and the surrounding MOF to be evaluated using in situ X-ray scattering with pair distribution function (PDF) analysis. Notably, the Rh/Pt···Mo distance in the active catalyst is shorter than the M···M bond lengths in the respective bulk metals. Models of the active cluster structure were identified based on the PDF data with complementary computation and X-ray absorption spectroscopy analysis.

2.
J Am Chem Soc ; 146(10): 6557-6565, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38271670

Despite global efforts to reduce carbon dioxide (CO2) emissions, continued industrialization threatens to exacerbate climate change. This work investigates methods to capture CO2, with a focus on the SIFSIX-3-Ni metal-organic framework (MOF) as a direct air capture (DAC) sorbent. SIFSIX-3-Ni exhibits promising CO2 adsorption properties but suffers from degradation processes under accelerated aging, which are akin to column regeneration conditions. Herein, we have grown the largest SIFSIX-3-Ni single crystals to date, facilitating single crystal X-ray diffraction analyses that enabled direct observation of the H2O and CO2 dynamics through adsorption and desorption. In addition, a novel space group (I4/mcm) for the SIFSIX-3-Ni is identified, which provided insights into structural transitions within the framework and elucidated water's role in degrading CO2 uptake performance as the material ages. In situ X-ray scattering methods revealed long-range and local structural transformations associated with CO2 adsorption in the framework pores as well as a temperature-dependent desorption mechanism. Pair distribution function analysis revealed a partial decomposition to form nonporous single-layer nanosheets of edge-sharing nickel oxide octahedra upon aging. The formation of these nanosheets is irreversible and reduces the amount of active material for the CO2 sorption. These findings provide crucial insights for the development of efficient and stable DAC sorbents, effectively reducing greenhouse gases, and suggest avenues for enhancing MOF stability under practical DAC conditions.

3.
J Am Chem Soc ; 146(6): 3955-3962, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38295514

The local environment of a metal active site plays an important role in affecting the catalytic activity and selectivity. In recent studies, tailoring the behavior of a molybdenum-based active site via modulation of the first coordination sphere has led to improved thioanisole oxidation performance, but disentangling electronic effects from steric influences that arise from these modifications is nontrivial, especially in heterogeneous systems. To this end, the tunability of metal-organic frameworks (MOFs) makes them promising scaffolds for controlling the coordination sphere of a heterogeneous, catalytically active metal site while offering additional attractive features such as crystallinity and high porosity. Herein, we report a variety of MOF-supported Mo species, which were investigated for catalytic thioanisole oxidation to methyl phenyl sulfoxide and/or methyl phenyl sulfone using tert-butyl hydroperoxide (tBHP) as the oxidant. In particular, MOFs of contrasting node architectures were targeted, presenting a unique opportunity to investigate the stereoelectronic control of Mo active sites in a systematic manner. A Zr6-based MOF, NU-1000, was employed along with its sulfated analogue Zr6-based NU-1000-SO4 to anchor a dioxomolybdenum species, which enabled examination of support-mediated active site polarizability on catalytic performance. In addition, a MOF containing a mixed metal node, Mo-MFU-4l, was used to probe the stereoelectronic impact of an N-donor ligand environment on the catalytic activity of the transmetalated Mo center. Characterization techniques, including single crystal X-ray diffraction, were concomitantly used with reaction time course profiles to better comprehend the dynamics of different Mo active sites, thus correlating structural change with activity.

4.
J Am Chem Soc ; 145(44): 24089-24097, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37876220

We report the synthesis of a series of pseudo-1D coordination polymer (CP) materials with the formula FeyCo1-yBTT (BTT = 1,3,5-benzenetrithiolate). These materials were structurally characterized by PXRD Rietveld, EXAFS, and PDF analyses, revealing that the CP superstructure enables a continuous and isomorphous alloy between the two homometallic compounds. Lower Fe loadings exhibit emergent spin glass magnetic behavior, such as memory effects and composition-dependent spin glass response time constants ranging from 6.9 × 10-9 s to 1.8 × 10-6 s. These data are consistent with the formation of spin clusters within the lattice. The magnetic behavior in these materials was modeled via replica exchange Monte Carlo simulation, which provides a good match for the experimentally measured spin glassing and magnetic phase transitions. These findings underscore how the rigid superstructure of CP and MOF scaffolds can enable the systematic tuning of physical properties, such as the spin glass behavior described here.

6.
J Am Chem Soc ; 145(20): 11195-11205, 2023 May 24.
Article En | MEDLINE | ID: mdl-37186787

Carbon capture, storage, and utilization (CCSU) represents an opportunity to mitigate carbon emissions that drive global anthropogenic climate change. Promising materials for CCSU through gas adsorption have been developed by leveraging the porosity, stability, and tunability of extended crystalline coordination polymers called metal-organic frameworks (MOFs). While the development of these frameworks has yielded highly effective CO2 sorbents, an in-depth understanding of the properties of MOF pores that lead to the most efficient uptake during sorption would benefit the rational design of more efficient CCSU materials. Though previous investigations of gas-pore interactions often assumed that the internal pore environment was static, discovery of more dynamic behavior represents an opportunity for precise sorbent engineering. Herein, we report a multifaceted in situ analysis following the adsorption of CO2 in MOF-808 variants with different capping agents (formate, acetate, and trifluoroacetate: FA, AA, and TFA, respectively). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis paired with multivariate analysis tools and in situ powder X-ray diffraction revealed unexpected CO2 interactions at the node associated with dynamic behavior of node-capping modulators in the pores of MOF-808, which had previously been assumed to be static. MOF-808-TFA displays two binding modes, resulting in higher binding affinity for CO2. Computational analyses further support these dynamic observations. The beneficial role of these structural dynamics could play an essential role in building a deeper understanding of CO2 binding in MOFs.

7.
J Am Chem Soc ; 145(13): 7268-7277, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36947559

Polyoxometalates (POMs) featuring 7, 12, 18, or more redox-accessible transition metal ions are ubiquitous as selective catalysts, especially for oxidation reactions. The corresponding synthetic and catalytic chemistry of stable, discrete, capping-ligand-free polythiometalates (PTMs), which could be especially attractive for reduction reactions, is much less well developed. Among the challenges are the propensity of PTMs to agglomerate and the tendency for agglomeration to block reactant access of catalyst active sites. Nevertheless, the pervasive presence of transition metal sulfur clusters metalloenzymes or cofactors that catalyze reduction reactions and the justifiable proliferation of studies of two-dimensional (2D) metal-chalcogenides as reduction catalysts point to the promise of well-defined and controllable PTMs as reduction catalysts. Here, we report the fabrication of agglomeration-immune, reactant-accessible, capping-ligand-free CoIIMo6IVS24n- clusters as periodic arrays in a water-stable, hierarchically porous Zr-metal-organic framework (MOF; NU1K) by first installing a disk-like Anderson polyoxometalate, CoIIIMo6VIO24m-, in size-matched micropores where the siting is established via difference electron density (DED) X-ray diffraction (XRD) experiments. Flowing H2S, while heating, reduces molybdenum(VI) ions to Mo(IV) and quantitatively replaces oxygen anions with sulfur anions (S2-, HS-, S22-). DED maps show that MOF-templated POM-to-PTM conversion leaves clusters individually isolated in open-channel-connected micropores. The structure of the immobilized cluster as determined, in part, by X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analysis, and pair distribution function (PDF) analysis of total X-ray scattering agrees well with the theoretically simulated structure. PTM@MOF displays both electrocatalytic and photocatalytic competency for hydrogen evolution. Nevertheless, the initially installed PTM appears to be a precatalyst, gaining competency only after the loss of ∼3 to 6 sulfurs and exposure to hydride-forming metal ions.

8.
J Am Chem Soc ; 145(8): 4589-4600, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36795004

Metal-organic frameworks (MOFs) that display photoredox activity are attractive materials for sustainable photocatalysis. The ability to tune both their pore sizes and electronic structures based solely on the choice of the building blocks makes them amenable for systematic studies based on physical organic and reticular chemistry principles with high degrees of synthetic control. Here, we present a library of eleven isoreticular and multivariate (MTV) photoredox-active MOFs, UCFMOF-n, and UCFMTV-n-x% with a formula Ti6O9[links]3, where the links are linear oligo-p-arylene dicarboxylates with n number of p-arylene rings and x mol% of multivariate links containing electron-donating groups (EDGs). The average and local structures of UCFMOFs were elucidated from advanced powder X-ray diffraction (XRD) and total scattering tools, consisting of parallel arrangements of one-dimensional (1D) [Ti6O9(CO2)6]∞ nanowires connected through the oligo-arylene links with the topology of the edge-2-transitive rod-packed hex net. Preparation of an MTV library of UCFMOFs with varying link sizes and amine EDG functionalization enabled us to study both their steric (pore size) and electronic (highest occupied molecular orbital-lowest unoccupied molecular orbital, HOMO-LUMO, gap) effects on the substrate adsorption and photoredox transformation of benzyl alcohol. The observed relationship between the substrate uptake and reaction kinetics with the molecular traits of the links indicates that longer links, as well as increased EDG functionalization, exhibit impressive photocatalytic rates, outperforming MIL-125 by almost 20-fold. Our studies relating photocatalytic activity with pore size and electronic functionalization demonstrate how these are important parameters to consider when designing new MOF photocatalysts.

9.
J Am Chem Soc ; 145(5): 2852-2859, 2023 Feb 08.
Article En | MEDLINE | ID: mdl-36693214

Heterogeneous catalysts exhibit significant changes in composition due to the influence of operating conditions, and these compositional changes can have dramatic effects on catalytic performance. For traditional bulk metal heterogeneous catalysts, relationships between composition and catalytic operating conditions are well documented. However, the influence of operating conditions on the compositions of single-site heterogeneous catalysts remains largely unresolved. To address this, we report a combined computational and experimental characterization of a Ni oxo catalyst under catalytic hydrogenation conditions. Specifically, pair distribution function (PDF) analysis is combined with ab initio thermodynamic modeling to investigate ligand environments present on a Ni oxo cluster supported in the metal-organic framework NU-1000. Comparisons of the experimentally observed and simulated Ni-O coordination numbers and Ni-O, Ni···Ni, and Ni···Zr distances provide insight into the Ni ligand environment under H2 (g). These comparisons suggest significant OH and H2O content and, further, that different Ni ions within the cluster and/or NU-1000 structure may comprise subtly different numbers of these ligands. Further, the observation of significant H2O content under H2 (g) suggests that the NU-1000 support supplies H2O to the cluster. Examples of ligand environments that could lead to the observed PDFs are provided. The combination of simulations and experiments provides new insights into the ligand environment for Ni-NU-1000 catalysts that will be useful for understanding the ligand environments of other single-site Ni catalysts as well.

10.
J Am Chem Soc ; 145(1): 268-276, 2023 Jan 11.
Article En | MEDLINE | ID: mdl-36538759

Chemically functionalized series of metal-organic frameworks (MOFs), with subtle differences in local structure but divergent properties, provide a valuable opportunity to explore how local chemistry can be coupled to long-range structure and functionality. Using in situ synchrotron X-ray total scattering, with powder diffraction and pair distribution function (PDF) analysis, we investigate the temperature dependence of the local- and long-range structure of MOFs based on NU-1000, in which Zr6O8 nodes are coordinated by different capping ligands (H2O/OH, Cl- ions, formate, acetylacetonate, and hexafluoroacetylacetonate). We show that the local distortion of the Zr6 nodes depends on the lability of the ligand and contributes to a negative thermal expansion (NTE) of the extended framework. Using multivariate data analyses, involving non-negative matrix factorization (NMF), we demonstrate a new mechanism for NTE: progressive increase in the population of a smaller, distorted node state with increasing temperature leads to global contraction of the framework. The transformation between discrete node states is noncooperative and not ordered within the lattice, i.e., a solid solution of regular and distorted nodes. Density functional theory calculations show that removal of ligands from the node can lead to distortions consistent with the Zr···Zr distances observed in the experiment PDF data. Control of the node distortion imparted by the nonlinker ligand in turn controls the NTE behavior. These results reveal a mechanism to control the dynamic structure of MOFs based on local chemistry.

11.
J Am Chem Soc ; 144(49): 22403-22408, 2022 12 14.
Article En | MEDLINE | ID: mdl-36416496

Although sulfide perovskites usually require high-temperature syntheses, we demonstrate that organosulfides can be used in the milder syntheses of halide perovskites. The zwitterionic organosulfide, cysteamine (CYS; +NH3(CH2)2S-), serves as both the X- site and A+ site in the ABX3 halide perovskites, yielding the first examples of 3D organosulfide-halide perovskites: (CYS)PbX2 (X- = Cl- or Br-). Notably, the band structures of (CYS)PbX2 capture the direct bandgaps and dispersive bands of APbX3 perovskites. The sulfur orbitals compose the top of the valence band in (CYS)PbX2, affording unusually small direct bandgaps of 2.31 and 2.16 eV for X- = Cl- and Br-, respectively, falling in the ideal range for the top absorber in a perovskite-based tandem solar cell. Measurements of the carrier dynamics in (CYS)PbCl2 suggest carrier trapping due to defects or lattice distortions. The highly desirable bandgaps, band dispersion, and improved stability of the organosulfide perovskites demonstrated here motivate the continued expansion and exploration of this new family of materials, particularly with respect to extracting photocurrent. Our strategy of combining the A+ and X- sites with zwitterions may offer more members in this family of mixed-anion 3D hybrid perovskites.


Calcium Compounds , Inorganic Chemicals , Oxides , Sulfides
12.
ACS Appl Mater Interfaces ; 14(47): 52886-52893, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36395424

To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic Ce12V6-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15. The 51V magic angle spinning solid-state nuclear magnetic resonance (51V MAS NMR) spectroscopy and differential pair distribution function (dPDF) analysis confirmed the structural integrity of the CeV cluster inside the SBA-15. The composite was then benchmarked for liquid-phase oxidation of 2-chloroethyl ethyl sulfide (CEES) under mild conditions and gas-phase oxidative dehydrogenation (ODH) of propane under high temperatures (up to 550 °C). The catalytic reactivity results demonstrated 8- and 14-fold increase in turnover frequency (TOF) values of the composite (CeV@10SBA-2) than the bulk CeV cluster under the same conditions for CEES oxidation and ODH, respectively. These results highlight the improved reactivity of the catalytically active CeV cluster as attributed to the higher dispersion of the discrete cluster upon immobilization within the SBA-15 support.

13.
Nature ; 611(7936): 479-484, 2022 Nov.
Article En | MEDLINE | ID: mdl-36289346

Conducting organic materials, such as doped organic polymers1, molecular conductors2,3 and emerging coordination polymers4, underpin technologies ranging from displays to flexible electronics5. Realizing high electrical conductivity in traditionally insulating organic materials necessitates tuning their electronic structure through chemical doping6. Furthermore, even organic materials that are intrinsically conductive, such as single-component molecular conductors7,8, require crystallinity for metallic behaviour. However, conducting polymers are often amorphous to aid durability and processability9. Using molecular design to produce high conductivity in undoped amorphous materials would enable tunable and robust conductivity in many applications10, but there are no intrinsically conducting organic materials that maintain high conductivity when disordered. Here we report an amorphous coordination polymer, Ni tetrathiafulvalene tetrathiolate, which displays markedly high electronic conductivity (up to 1,200 S cm-1) and intrinsic glassy-metallic behaviour. Theory shows that these properties are enabled by molecular overlap that is robust to structural perturbations. This unusual set of features results in high conductivity that is stable to humid air for weeks, pH 0-14 and temperatures up to 140 °C. These findings demonstrate that molecular design can enable metallic conductivity even in heavily disordered materials, raising fundamental questions about how metallic transport can exist without periodic structure and indicating exciting new applications for these materials.

14.
J Am Chem Soc ; 144(37): 16883-16897, 2022 09 21.
Article En | MEDLINE | ID: mdl-36089745

Understanding heterogeneous catalysts is a challenging pursuit due to surface site nonuniformity and aperiodicity in traditionally used materials. One example is sulfated metal oxides, which function as highly active catalysts and as supports for organometallic complexes. These applications are due to traits such as acidity, ability to act as a weakly coordinating ligand, and aptitude for promoting transformations via radical cation intermediates. Research is ongoing about the structural features of sulfated metal oxides that imbue the aforementioned properties, such as sulfate geometry and coordination. To better understand these materials, metal-organic frameworks (MOFs) have been targeted as structurally defined analogues. Composed of inorganic nodes and organic linkers, MOFs possess features such as high porosity and crystallinity, which make them attractive for mechanistic studies of heterogeneous catalysts. In this work, Zr6-based MOF NU-1000 is sulfated and characterized using techniques such as single crystal X-ray diffraction in addition to diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The dynamic nature of the sulfate binding motif is found to transition from monodentate, to bidentate, to tridentate depending on the degree of hydration, as supported by density functional theory (DFT) calculations. Heightened Brønsted acidity compared to the parent MOF was observed upon sulfation and probed through trimethylphosphine oxide physisorption, ammonia sorption, in situ ammonia DRIFTS, and DFT studies. With the support structure benchmarked, an organoiridium complex was chemisorbed onto the sulfated MOF node, and the efficacy of this supported catalyst was demonstrated for stoichiometric and catalytic activation of benzene-d6 and toluene with structure-activity relationships derived.


Metal-Organic Frameworks , Ammonia , Benzene , Catalysis , Ligands , Metal-Organic Frameworks/chemistry , Oxides/chemistry , Sulfates , Sulfur Oxides , Toluene , Zirconium/chemistry
15.
Chem Sci ; 12(41): 13836-13847, 2021 Oct 27.
Article En | MEDLINE | ID: mdl-34760169

Unraveling the complex, competing pathways that can govern reactions in multicomponent systems is an experimental and technical challenge. We outline and apply a novel analytical toolkit that fully leverages the synchronicity of multimodal experiments to deconvolute causal from correlative relationships and resolve structural and chemical changes in complex materials. Here, simultaneous multimodal measurements combined diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and angular dispersive X-ray scattering suitable for pair distribution function (PDF), X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) analyses. The multimodal experimental data was interpreted via multi-level analysis; conventional analyses of each data series were integrated through meta-analysis involving non-negative matrix factorization (NMF) as a dimensional reduction algorithm and correlation analysis. We apply this toolkit to build a cohesive mechanistic picture of the pathways governing silver nanoparticle formation in zeolite A (LTA), which is key to designing catalytic and separations-based applications. For this Ag-LTA system, the mechanisms of zeolite dehydration, framework flexing, ion reduction, and cluster and nanoparticle formation and transport through the zeolite are elucidated. We note that the advanced analytical approach outline here can be applied generally to multimodal experiments, to take full advantage of the efficiencies and self-consistencies in understanding complex materials and go beyond what can be achieved by conventional approaches to data analysis.

16.
J Am Chem Soc ; 143(48): 20090-20094, 2021 12 08.
Article En | MEDLINE | ID: mdl-34826220

How molecules approach, bind at, and release from catalytic sites is key to heterogeneous catalysis, including for emerging metal-organic framework (MOF)-based catalysts. We use in situ synchrotron X-ray scattering analysis to evaluate the dominant binding sites for reagent and product molecules in the vicinity of catalytic Ni-oxo clusters in NU-1000 with different surface functionalization under conditions approaching those used in catalysis. The locations of the reagent and product molecules within the pores can be linked to the activity for ethylene hydrogenation. For the most active catalyst, ethylene reagent molecules bind close to the catalytic clusters, but only at temperatures approaching experimentally observed onset of catalysis. The ethane product molecules favor a different binding location suggesting that the product is readily released from the active site. An unusual guest-dependence of the framework negative thermal expansion is documented. We hypothesize that reagent and product binding sites reflect the pathway through the MOF to the active site and can be used to identify key factors that impact the catalytic activity.

17.
ACS Appl Mater Interfaces ; 13(30): 36232-36239, 2021 Aug 04.
Article En | MEDLINE | ID: mdl-34308623

We describe and experimentally illustrate a strategy for synthesizing reactant-accessible, supported arrays of well-confined, sub-nanometer to 2 nm, metal(0) clusters and particles-here, copper, palladium, and platinum. The synthesis entails (a) solution-phase binding of metal ions by a generation-2 poly(amidoamine) (PAMAM) dendrimer, (b) electrostatic uptake of metalated, solution-dissolved, and positively charged dendrimers by the negatively charged pores of a zirconium-based metal-organic framework (MOF), NU-1000, and (c) chemical reduction of the incorporated metal ions. The pH of the unbuffered solution is known to control the overall charges of both the dendrimer guests and the hierarchically porous MOF. The combined results of electron microscopy, X-ray spectroscopy, and other measurements indicate the formation and microscopically uniform spatial distributions of zero-valent, monometallic Cu, Pd, and Pt species, with sizes depending strongly on the conditions and methods used for reduction of incorporated metal ions. Access to sub-nanometer clusters is ascribed to the stabilization effects imposed by the two templates (i.e., NU-1000 and dendrimer), which significantly limit the extent to which the metal atoms aggregate; as the thermal input increases, the dendrimer template gradually decomposes, allowing a further aggregation of metal clusters inside the hexagonal mesoporous channel of the MOF template, which ultimately self-limits at 3 nm (i.e., the mesopore width of NU-1000). Using CO oxidation and n-hexene hydrogenation as model reactions in the gas and condensed phases, we show that the dual-templated metal species can act as stable, efficient heterogeneous catalysts.

18.
J Am Chem Soc ; 143(24): 8976-8980, 2021 06 23.
Article En | MEDLINE | ID: mdl-34115476

Understanding and controlling nanomaterial structure, chemistry, and defects represents a synthetic and characterization challenge. Metal-organic frameworks (MOFs) have recently been explored as unconventional precursors from which to prepare nanomaterials. Here we use in situ X-ray pair distribution function analysis to probe the mechanism through which MOFs transform into nanomaterials during pyrolysis. By comparing a series of bimetallic MOFs with trimeric node different compositions (Fe3, Fe2Co, and Fe2Ni) linked by carboxylate ligands in a PCN-250 lattice, we demonstrate that the resulting nanoparticle structure, chemistry, and defect concentration depend on the node chemistry of the original MOF. These results suggest that the preorganized structure and chemistry of the MOF offer new potential control over the nanomaterial synthesis under mild reaction conditions. In the case of Fe2Ni-PCN-250, selective extraction of one Ni ion from each node without collapsing the framework (i.e., node-ligand connectivity) leaves a metal-deficient MOF state that may provide a new route to post-synthetically tune the chemistry the MOF and subsequent nanomaterials.

19.
Bioconjug Chem ; 32(7): 1232-1241, 2021 07 21.
Article En | MEDLINE | ID: mdl-33284001

The radioactive isotopes scandium-44/47 and lutetium-177 are gaining relevance for radioimaging and radiotherapy, resulting in a surge of studies on their coordination chemistry and subsequent applications. Although the trivalent ions of these elements are considered close homologues, dissimilar chemical behavior is observed when they are complexed by large ligand architectures due to discrepancies between Lu(III) and Sc(III) ions with respect to size, chemical hardness, and Lewis acidity. Here, we demonstrate that Lu and Sc complexes of 1,4-bis(methoxycarbonyl)-7-[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane (H3mpatcn) and its corresponding bioconjugate picaga-DUPA can be employed to promote analogous structural features and, subsequently, biological properties for coordination complexes of these ions. The close homology was evidenced using potentiometric methods, computational modeling, variable temperature mass spectrometry, and pair distribution function analysis of X-ray scattering data. Radiochemical labeling, in vitro stability, and biodistribution studies with Sc-47 and Lu-177 indicate that the 7-coordinate ligand environment of the bifunctional picaga ligand is compatible with biological applications and the future investigation of ß-emitting, picaga-chelated Sc and Lu isotopes for radiotherapy.


Chelating Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Lutetium/chemistry , Precision Medicine , Radiopharmaceuticals/chemistry , Scandium/chemistry , Ligands , Molecular Structure
20.
J Am Chem Soc ; 141(45): 18142-18151, 2019 Nov 13.
Article En | MEDLINE | ID: mdl-31670511

Metal organic frameworks (MOFs), with their crystalline, porous structures, can be synthesized to incorporate a wide range of catalytically active metals in tailored surroundings. These materials have potential as catalysts for conversion of light alkanes, feedstocks available in large quantities from shale gas that are changing the economics of manufacturing commodity chemicals. Mononuclear high-spin (S = 2) Fe(II) sites situated in the nodes of the MOF MIL-100(Fe) convert propane via dehydrogenation, hydroxylation, and overoxidation pathways in reactions with the atomic oxidant N2O. Pair distribution function analysis, N2 adsorption isotherms, X-ray diffraction patterns, and infrared and Raman spectra confirm the single-phase crystallinity and stability of MIL-100(Fe) under reaction conditions (523 K in vacuo, 378-408 K C3H8 + N2O). Density functional theory (DFT) calculations illustrate a reaction mechanism for the formation of 2-propanol, propylene, and 1-propanol involving the oxidation of Fe(II) to Fe(III) via a high-spin Fe(IV)═O intermediate. The speciation of Fe(II) and Fe(III) in the nodes and their dynamic interchange was characterized by in situ X-ray absorption spectroscopy and ex situ Mössbauer spectroscopy. The catalytic relevance of Fe(II) sites and the number of such sites were determined using in situ chemical titrations with NO. N2 and C3H6 production rates were found to be first-order in N2O partial pressure and zero-order in C3H8 partial pressure, consistent with DFT calculations that predict the reaction of Fe(II) with N2O to be rate determining. DFT calculations using a broken symmetry method show that Fe-trimer nodes affecting reaction contain antiferromagnetically coupled iron species, and  highlight the importance of stabilizing high-spin (S = 2) Fe(II) species for effecting alkane oxidation at low temperatures (<408 K).

...