Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
1.
Nat Nanotechnol ; 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448520

Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor-acceptor structure via a sensitive single-molecule electrical approach. The radical is sandwiched between nanogapped graphene electrodes via covalent amide bonds to construct stable graphene-molecule-graphene single-molecule junctions. We measure the electrical conductance as a function of temperature and track the evolution of the closed-shell and open-shell electronic structures in real time, the open-shell triplet state being stabilized with increasing temperature. Furthermore, we tune the spin states by external stimuli, such as electrical and magnetic fields, and extract thermodynamic and kinetic parameters of the transition between closed-shell and open-shell states. Our findings provide insights into the evolution of single-molecule radicals under external stimuli, which may proof instrumental for the development of functional quantum spin-based molecular devices.

2.
Adv Mater ; : e2312182, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38335933

People have been looking for an energy-efficient and sustainable method to produce future chemicals for decades. Heterogeneous single-atom catalysts (SACs) with atomic dispersion of robust, well-characterized active centers are highly desirable. In particular, correlated SACs with cooperative interaction between adjacent single atoms allow the switching of the single-site pathway to the dual or multisite pathway, thus promoting bimolecular or more complex reactions for the synthesis of fine chemicals. Herein, the structural uniqueness of correlated SACs, including the intermetal distance and electronic interaction in homo/heteronuclear metal sites is featured. Recent advances in the production methods of correlated SACs, showcasing the research status and challenges in traditional methods (such as pyrolysis, wet impregnation, and confined synthesis) for building a comprehensive multimetallic SAC library, are summarized. Emerging strategies such as process automation and continuous-flow synthesis are highlighted, minimizing the inconsistency in laboratory batch production and allowing high throughput screening and upscaling toward the next-stage chemical production by correlated SACs.

3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 148-157, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38284256

Objective To investigate the expression and clinical significance of PD-1 and its ligand PD-L1 in peripheral blood CD19+CD25+ regulatory B cells (Bregs) in patients with systemic lupus erythematosus (SLE). Methods Peripheral blood samples were collected from 50 patients and 41 healthy controls (HCs). The proportion of CD19+CD25+Bregs in peripheral blood as well as the expression of PD-1+B and PD-L1+B cells on CD19+CD25+/-B cells, were detected by flow cytometry. At the same time, clinical information, such as clinical manifestations and laboratory indexes, was collected from patients. CD4+T cells and CD19+B cells were isolated by immunomagnetic beads and co-cultured in vitro to detect the differentiation of Bregs. Results The proportion of CD19+CD25+Bregs in the peripheral blood of SLE patients was lower than that in HC, while the expression of PD-1 and PD-L1 on Bregs was higher than that in HCs. SLE patients with pleural effusion, arthritis, and elevated CRP had a higher frequency of Bregs compared to the corresponding negative group. SLE patients with decreased immunoglobulin M (IgM) and positive anti-ribonuclear protein (RNP) antibodies had a lower frequency of Bregs compared to the corresponding negative group. SLE patients with infection, fever, arthritis, and elevated immunoglobulin A (IgA) had a higher frequency of CD19+CD25+PD-1+ cells compared to the corresponding negative group. SLE patients with infection, fever, and elevated IgA had a higher frequency of CD19+CD25+PD-L1+ cells compared to the corresponding negative group. And activated CD4+T cells were beneficial to the expression of CD25 on CD19+B cells. Conclusion The peripheral blood CD19+CD25+ Bregs are decreased in SLE patients, while the expression of PD-1 and PD-L1 on cell surface is increased, which is correlated with clinical manifestations and laboratory parameters. Activation of CD4+T cells promotes the differentiation of Bregs.


Arthritis , B-Lymphocytes, Regulatory , Lupus Erythematosus, Systemic , Humans , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen , B-Lymphocytes, Regulatory/metabolism , Antigens, CD19/metabolism , Arthritis/metabolism , Immunoglobulin A/metabolism , Flow Cytometry , T-Lymphocytes, Regulatory
4.
Adv Sci (Weinh) ; 11(13): e2308046, 2024 Apr.
Article En | MEDLINE | ID: mdl-38287886

The dynamic response of single-atom catalysts to a reactive environment is an increasingly significant topic for understanding the reaction mechanism at the molecular level. In particular, single atoms may experience dynamic aggregation into clusters or nanoparticles driven by thermodynamic or kinetic factors. Herein, the inherent mechanistic nuances that determine the dynamic profile during the reaction will be uncovered, including the intrinsic stability and site-migration barrier of single atoms, external stimuli (temperature, voltage, and adsorbates), and the influence of catalyst support. Such dynamic aggregation can be beneficial or deleterious on the catalytic performance depending on the optimal initial state. Those examples will be highlighted where in situ formed clusters, rather than single atoms, serve as catalytically active sites for improved catalytic performance. This is followed by the introduction of operando techniques to understand the structural evolution. Finally, the emerging strategies via confinement and defect-engineering to regulate dynamic aggregation will be briefly discussed.

5.
J Am Chem Soc ; 146(1): 668-676, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38154089

Electrochemical synthesis of ammonia via the nitrate reduction reaction (NO3RR) has been intensively researched as an alternative to the traditional Haber-Bosch process. Most research focuses on the low concentration range representative of the nitrate level in wastewater, leaving the high concentration range, which exists in nuclear and fertilizer wastes, unexplored. The use of a concentrated electrolyte (≥1 M) for higher rate production is hampered by poor hydrogen transfer kinetics. Herein, we demonstrate that a cocatalytic system of Ru/Cu2O catalyst enables NO3RR at 10.0 A in 1 M nitrate electrolyte in a 16 cm2 flow electrolyzer, with 100% faradaic efficiency toward ammonia. Detailed mechanistic studies by deuterium labeling and operando Fourier transform infrared (FTIR) spectroscopy allow us to probe the hydrogen transfer rate and intermediate species on Ru/Cu2O. Ab initio molecular dynamics (AIMD) simulations reveal that adsorbed hydroxide on Ru nanoparticles increases the density of the hydrogen-bonded water network near the Cu2O surface, which promotes the hydrogen transfer rate. Our work highlights the importance of engineering synergistic interactions in cocatalysts for addressing the kinetic bottleneck in electrosynthesis.

6.
Adv Rheumatol ; 63(1): 51, 2023 10 17.
Article En | MEDLINE | ID: mdl-37848996

BACKGROUND: The defect of B cell self-tolerance and the continuous antigen presentation by T cells (TCs) mediated by autoreactive B cells (BCs) play a key role in the occurrence and development of systemic lupus erythematosus (SLE). PD-1/PD-L1 signaling axis negatively regulates the immune response of TCs after activation and maintains immune tolerance. However, the effect of PD-1/PD-L1 signaling axis on the interaction between CD19+B/CD4+TCs in the peripheral blood of patients with SLE has not been studied in detail. METHODS: PD-1/PD-L1 and Ki-67 levels in peripheral blood (PB) of 50 SLE patients and 41 healthy controls (HCs) were detected through flow cytometry, and then the expression of PD-1+/-cells and PD-L1+/-cells Ki-67 was further analyzed. CD19+B/CD4+TCs were separated for cell culture and the supernatant was collected to determine proliferation and differentiation of TCs. IL-10 and IFN-γ secretion in the supernatant was also determined using ELISA. RESULTS: The PD-1, PD-L1, and Ki-67 levels on CD19+B/CD4+TCs in patients with SLE were higher than HCs. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ cells was higher than that of PD-L1- cells, and the proliferative activity of PD-1+ cells was higher than that of PD-1- cells. In the system co-culturing CD19+B/CD4+TCs from HCs/SLE patients, activated BCs promoted TCs proliferation and PD-L1 expression among TCs. Addition of anti-PD-L1 to co-culture system restored the proliferation of TCs, and inhibited IL-10/IFN-γ level. The addition of anti-PD-L1 to co-culture system also restored Tfh and downregulated Treg in HCs. CONCLUSIONS: Axis of PD-1/PD-L1 on CD19+B/CD4+TCs in PB of SLE patients is abnormal, and cell proliferation is abnormal. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ and PD-1+ cells compared with PD-L1- and PD-1- cells in SLE patients, respectively. CD19+B/CD4+TCs in SLE patients can interact through PD-1/PD-L1.


Interleukin-10 , Lupus Erythematosus, Systemic , Humans , B7-H1 Antigen/metabolism , CD4-Positive T-Lymphocytes , Ki-67 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism
7.
Angew Chem Int Ed Engl ; 62(37): e202307101, 2023 09 11.
Article En | MEDLINE | ID: mdl-37438952

We report a rationally designed membrane-intercalating conjugated oligoelectrolyte (COE), namely COE-IC, which endows aerobic N2 -fixing bacteria Azotobacter vinelandii with a light-harvesting ability that enables photosynthetic ammonia production. COE-IC possesses an acceptor-donor-acceptor (A-D-A) type conjugated core, which promotes visible light absorption with a high molar extinction coefficient. Furthermore, COE-IC spontaneously associates with A. vinelandii to form a biohybrid in which the COE is intercalated within the lipid bilayer membrane. In the presence of L-ascorbate as a sacrificial electron donor, the resulting COE-IC/A. vinelandii biohybrid showed a 2.4-fold increase in light-driven ammonia production, as compared to the control. Photoinduced enhancement of bacterial biomass and production of L-amino acids is also observed. Introduction of isotopically enriched 15 N2 atmosphere led to the enrichment of 15 N-containing intracellular metabolites, consistent with the products being generated from atmospheric N2 .


Azotobacter vinelandii , Nitrogen Fixation , Ammonia , Bacteria , Nitrogen
8.
Adv Mater ; 35(21): e2212184, 2023 May.
Article En | MEDLINE | ID: mdl-36870078

The zinc oxide (ZnO) nanoparticles (NPs) are well-documented as an excellent electron transport layer (ETL) in optoelectronic devices. However, the intrinsic surface flaw of the ZnO NPs can easily result in serious surface recombination of carriers. Exploring effective passivation methods of ZnO NPs is essential to maximize the device's performance. Herein, a hybrid strategy is explored for the first time to improve the quality of ZnO ETL by incorporating stable organic open-shell donor-acceptor type diradicaloids. The high electron-donating feature of the diradical molecules can efficiently passivate the deep-level trap states and improve the conductivity of ZnO NP film. The unique advantage of the radical strategy is that its passivation effectiveness is highly correlated with the electron-donating ability of radical molecules, which can be precisely controlled by the rational design of molecular chemical structures. The well-passivated ZnO ETL is applied in lead sulfide (PbS) colloidal quantum dot solar cells, delivering a power conversion efficiency of 13.54%. More importantly, as a proof-of-concept study, this work will inspire the exploration of general strategies using radical molecules to construct high-efficiency solution-processed optoelectronic devices.

9.
ACS Nano ; 17(3): 2901-2911, 2023 Feb 14.
Article En | MEDLINE | ID: mdl-36638084

To realize the practical application of lithium-sulfur (Li-S) batteries, there is a need to inhibit uncontrolled Li deposition by facilitating Li-ion migration, and suppress the irreversible consumption of cathodes by preventing polysulfide shuttling. However, a permselective artifical membrane or interlayer which features fast ion transport but low polysulfide crossover is elusive. Here, we report the design and synthesis of a fluorinated covalent organic framework (4F-COF)-based membrane with a high permselectivity and increased battery lifespan. Combining density functional theory calculation, molecular dynamic simulation, and in situ Raman analysis, we demonstrate that fluorinated COF eliminates polysulfides shutting and dendritic lithium formation. Consequently, Li symmetrical cells demonstrate Li plating/stripping behaviors for 2000 h under 1 mA cm-2. More importantly, Li-S batteries based on the 4F-COF/PP separator achieve cycling retention of 82.3% over 1000 cycles at 2 C, rate performance of 568.0 mA h g-1 at 10 C, and an areal capacity of 7.60 mA h cm-2 with a high sulfur loading (∼9 mg cm-2). This work demonstrates that functionalizing nanochannels in COFs can impart permselectivity for energy storage applications.

10.
Adv Mater ; 35(15): e2209948, 2023 Apr.
Article En | MEDLINE | ID: mdl-36652951

Single-atom catalysts (SACs) show great potential for rechargeable Zn-air batteries (ZABs); however, scalable production of SACs from sustainable resources is difficult owing to poor control of the local coordination environment. Herein, lignosulfonate, a by-product of the papermaking industry, is utilized as a multifunctional bioligand for the mass production of SACs with highly active MN4 S sites (M represents Fe, Cu, and Co) via strong metalnitrogen/sulfur coordination. This effectively adjusts the charge distribution and promotes the catalytic performance, leading to highly durable and excellent performance in oxygen reduction and evolution reactions for ZABs. This study paves the way for the industrial production of cost-effective SACs in a sustainable manner.

11.
J Am Chem Soc ; 145(4): 2271-2281, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36654479

Dynamic reconstruction of catalyst active sites is particularly important for metal oxide-catalyzed oxygen evolution reaction (OER). However, the mechanism of how vacancy-induced reconstruction aids OER remains ambiguous. Here, we use Co3O4 with Co or O vacancies to uncover the effects of different defects in the reconstruction process and the active motifs relevant to alkaline OER. Combining in situ characterization and theoretical calculations, we found that cobalt oxides are converted to an amorphous [Co(OH)6] intermediate state, and then the mismatched rates of *OH adsorption and deprotonation lead to irreversible catalyst reconstruction. The stronger *OH adsorption but weaker deprotonation induced by O defects provides the driving force for reconstruction, while Co defects favor dehydrogenation and reduce the reconstruction rate. Importantly, both O and Co defects trigger highly OER-active bridge Co sites in reconstructed catalysts, of which Co defects induce a short Co-Co distance (3.38 Å) under compressive lattice stress and show the best OER activity (η10 of 262 mV), superior to reconstructed oxygen-defected Co3O4-VO (η10 of 300 mV) and defect-free Co3O4 (η10 of 320 mV). This work highlights that engineering defect-dependent reconstruction may provide a rational route for electrocatalyst design in energy-related applications.

12.
Adv Rheumatol ; 63: 51, 2023. tab, graf
Article En | LILACS-Express | LILACS | ID: biblio-1519970

Abstract Background The defect of B cell self-tolerance and the continuous antigen presentation by T cells (TCs) mediated by autoreactive B cells (BCs) play a key role in the occurrence and development of systemic lupus erythematosus (SLE). PD-1/PD-L1 signaling axis negatively regulates the immune response of TCs after activation and maintains immune tolerance. However, the effect of PD-1/PD-L1 signaling axis on the interaction between CD19+B/CD4+TCs in the peripheral blood of patients with SLE has not been studied in detail. Methods PD-1/PD-L1 and Ki-67 levels in peripheral blood (PB) of 50 SLE patients and 41 healthy controls (HCs) were detected through flow cytometry, and then the expression of PD-1+/−cells and PD-L1+/−cells Ki-67 was further analyzed. CD19+B/CD4+TCs were separated for cell culture and the supernatant was collected to determine proliferation and differentiation of TCs. IL-10 and IFN-γ secretion in the supernatant was also determined using ELISA. Results The PD-1, PD-L1, and Ki-67 levels on CD19+B/CD4+TCs in patients with SLE were higher than HCs. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ cells was higher than that of PD-L1− cells, and the proliferative activity of PD-1+ cells was higher than that of PD-1− cells. In the system co-culturing CD19+B/CD4+TCs from HCs/SLE patients, activated BCs promoted TCs proliferation and PD-L1 expression among TCs. Addition of anti-PD-L1 to co-culture system restored the proliferation of TCs, and inhibited IL-10/IFN-γ level. The addition of anti-PD-L1 to co-culture system also restored Tfh and downregulated Treg in HCs. Conclusions Axis of PD-1/PD-L1 on CD19+B/CD4+TCs in PB of SLE patients is abnormal, and cell proliferation is abnormal. In CD19+B/CD4+TCs of SLE patients, the proliferative activity of PD-L1+ and PD-1+ cells compared with PD-L1− and PD-1− cells in SLE patients, respectively. CD19+B/CD4+TCs in SLE patients can interact through PD-1/PD-L1.

13.
Adv Mater ; 34(33): e2204638, 2022 Aug.
Article En | MEDLINE | ID: mdl-35748197

Reducing particle size in supported metal catalysts to single-atom level isolates the active metal sites and maximizes the atomic utilization efficiency. However, the large inter-atom distance, particularly in low-loading single-atom catalyst (SAC), is not favorable for a complex reaction where two (or more) reactants have to be activated. A key question is how to control the inter-atom distances to promote dinuclear-type coactivation at the adjacent metal sites. Here, it is reported that reducing the average inter-atom distance of copper SACs supported on carbon nitride (C3 N4 ) to 0.74 ± 0.13 nm allows these catalysts to exhibit a dinuclear-type catalytic mechanism in the nitrile-azide cycloaddition. Operando X-ray absorption fine structure study reveals a dynamic ligand exchange process between nitrile and azide, followed by their coactivation on dinuclear Cu SAC sites to form the tetrazole product. This work highlights that reducing the nearest-neighbor distance of SAC allows the mechanistic pathway to diversify from single-site to multisite catalysis.

14.
Nat Commun ; 13(1): 2807, 2022 May 19.
Article En | MEDLINE | ID: mdl-35589718

Single-atom catalysts (SACs) offer many advantages, such as atom economy and high chemoselectivity; however, their practical application in liquid-phase heterogeneous catalysis is hampered by the productivity bottleneck as well as catalyst leaching. Flow chemistry is a well-established method to increase the conversion rate of catalytic processes, however, SAC-catalysed flow chemistry in packed-bed type flow reactor is disadvantaged by low turnover number and poor stability. In this study, we demonstrate the use of fuel cell-type flow stacks enabled exceptionally high quantitative conversion in single atom-catalyzed reactions, as exemplified by the use of Pt SAC-on-MoS2/graphite felt catalysts incorporated in flow cell. A turnover frequency of approximately 8000 h-1 that corresponds to an aniline productivity of 5.8 g h-1 is achieved with a bench-top flow module (nominal reservoir volume of 1 cm3), with a Pt1-MoS2 catalyst loading of 1.5 g (3.2 mg of Pt). X-ray absorption fine structure spectroscopy combined with density functional theory calculations provide insights into stability and reactivity of single atom Pt supported in a pyramidal fashion on MoS2. Our study highlights the quantitative conversion bottleneck in SAC-mediated fine chemicals production can be overcome using flow chemistry.

15.
Sci Total Environ ; 805: 150286, 2022 Jan 20.
Article En | MEDLINE | ID: mdl-34537692

Due to the unfavorable soil conditions and water resources, the cropland use pattern in the farming-pastoral ecotone in northern China is complex. The program named "Grain for Green" has accelerated the cropland change. However, the complex cropland and retired cropland are challenging to monitor with remote sensing due to their spatially dispersed and easily confused with spectrally similar land use classes such as nature grasslands and non-cropped fields. Taking farming-pastoral ecotone in the northern foot of the Yinshan Mountains as a case study, we explored a classification approach for complex cropland and retired cropland, which was introduced as a specific land use class by using multi-temporal Landsat TM and OLI images with Google Earth Engine. During 1990-2000, cropland increased with a sharper growth and increased with a slower growth from 2001 to 2010, and then decreased significantly from 2011 to 2019, to lead the cropland area in 2019 was smaller than an area in 1990. We analyzed the spatiotemporal trajectories of retired cropland in 2019 using the Land Use Change Trajectory method to evaluate its source. In our finding, approximately 77% of retired cropland was labelled as cropland before 2019; albeit, not all retired cropland was converted from cropland. Moreover, we qualitatively assessed the vegetation dynamics in the study area by utilizing the long-term NDVI-mean value to reveal that vegetation coverage has shown a continuously increasing trend. It is related to the decline of cropland and the increase of retired cropland at the same rate. Our results highlighted that the "Grain for Green" program had led the vegetation restoration in the farming-pastoral ecotone. Our approach for monitoring cropland and retired cropland can improve the understanding of the driving factors and consequences of these critical land use change trajectories.


Agriculture , Soil , China , Edible Grain , Farms
16.
Adv Mater ; 34(25): e2103882, 2022 Jun.
Article En | MEDLINE | ID: mdl-34510576

To date, the scope of single-atom catalysts (SAC) in liquid-phase transformations is rather limited owing to stability issues and the inability to activate complex substances. This calls for a better design of the catalyst support that can provide a dynamic coordination environment needed for catalytic action, and yet retain robustness against leaching or aggregation. In addition, the chemical orthogonality of SAC is useful for designing tandem or multicomponent reactions, in which side reactions common to metal nanoparticles are suppressed. In this review, the intrinsic mechanism will be highlighted that controls reaction efficiency and selectivity in SAC-catalyzed pathways, as well as the structural dynamism of SAC under complex liquid-phase conditions. These mechanistic insights are helpful for the development of next-generation SAC systems for the synthesis of high-value pharmaceuticals through late-stage functionalization, sequential and multicomponent strategies.


Catalysis
17.
J Phys Chem Lett ; 12(40): 9783-9790, 2021 Oct 14.
Article En | MEDLINE | ID: mdl-34596405

Narrow bandgap donor-acceptor organic semiconductors are generally considered to show a closed-shell singlet ground state, and their radicals are reported as impurities, defects, polarons, and charge transfer monoradicals. Herein, we systematically investigated the open-shell singlet diradical electronic ground state of two diketopyrrolopyrrole-based compounds via the combination of electron spin resonance (ESR), nuclear magnetic resonance, superconducting quantum interference device magnetometry, and theoretical calculations. It is widely known that the quinoidal character will be significantly enhanced in the aggregation state accompanied by improved planarity and enhanced delocalization. We proposed an aggregation-induced radical and captodative effect as the driving force for the formation and stabilization of the open-shell quinoid diradical based on the ESR test in different proportions of mixed solvents. Our results provided a novel view for understanding the intrinsic chemical structure of donor-acceptor organic semiconductors, the open-shell singlet and thermally excited triplet electronic states, and the unexpected physical processes between the ground state and the excited state.

18.
Nat Commun ; 12(1): 5889, 2021 Oct 07.
Article En | MEDLINE | ID: mdl-34620849

Most organic semiconductors have closed-shell electronic structures, however, studies have revealed open-shell character emanating from design paradigms such as narrowing the bandgap and controlling the quinoidal-aromatic resonance of the π-system. A fundamental challenge is understanding and identifying the molecular and electronic basis for the transition from a closed- to open-shell electronic structure and connecting the physicochemical properties with (opto)electronic functionality. Here, we report donor-acceptor organic semiconductors comprised of diketopyrrolopyrrole and naphthobisthiadiazole acceptors and various electron-rich donors commonly utilized in constructing high-performance organic semiconductors. Nuclear magnetic resonance, electron spin resonance, magnetic susceptibility measurements, single-crystal X-ray studies, and computational investigations connect the bandgap, π-extension, structural, and electronic features with the emergence of various degrees of diradical character. This work systematically demonstrates the widespread diradical character in the classical donor-acceptor organic semiconductors and provides distinctive insights into their ground state structure-property relationship.

19.
Angew Chem Int Ed Engl ; 60(51): 26718-26724, 2021 Dec 13.
Article En | MEDLINE | ID: mdl-34580969

The uncontrollable dendrite growth of Li metal anode leads to poor cycle stability and safety concerns, hindering its utilization in high energy density batteries. Herein, a phenoxy radical Spiro-O8 is proposed as an artificial protection film for Li metal anode owing to its excellent film-forming capability and remarkable ionic conductivity. A spontaneous redox reaction between the Spiro-O8 and Li metal results in the formation of a uniform and highly ionic conductive organic film in the bottom. Meanwhile, the phenoxy radicals on surface of Spiro-O8 facilitate the decomposition of Li salt upon exposed to the ether electrolyte and lead the formation of LiF film on the top. Arising from the synergistic effects of inner high ionic conductive film and outer rigid film, stable Li plating/stripping can be realized at a high current density (4000 cycles at 10 mA cm-2 ) and a high areal capacity of 5 mAh cm-2 for 550 h with an ultrahigh Li utilization rate of 54.6 %. As a proof of concept, this work shows a facile strategy to rationally fabricate dual-layered interfaces for Li metal anodes.

20.
Angew Chem Int Ed Engl ; 60(46): 24424-24429, 2021 Nov 08.
Article En | MEDLINE | ID: mdl-34523773

Conjugated organic radical polymers with stable radical features are difficult to design because the π conjugation in the polymer backbones makes the radicals readily delocalize and tend to undergo covalent bonding processes. In this work, we report an electronic isolation strategy to design stable porous radical polymers by homocoupling reaction from a meta-position active monomer. The meta linkage ensures less conjugation in the polymer skeletons, localizes the resonant radicals, and prevents them from recombination. The resulting porous radical polymer exhibits exceptional radical characters with ultralow band gap of 0.68 eV, strong yet extended UV/Vis-NIR absorption up to 1800 nm, and high spin density. The above features make the polymer very promising in the photothermal conversion with record-high photothermal temperature increment of ≈∼240 °C and striking solar-driven water evaporation efficiency of 96.8 %. Our results demonstrate the feasibility of electronic isolation of radicals for producing outstanding photothermal materials.

...