Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2314450121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621133

RESUMEN

Proteinaceous brain inclusions, neuroinflammation, and vascular dysfunction are common pathologies in Alzheimer's disease (AD). Vascular deficits include a compromised blood-brain barrier, which can lead to extravasation of blood proteins like fibrinogen into the brain. Fibrinogen's interaction with the amyloid-beta (Aß) peptide is known to worsen thrombotic and cerebrovascular pathways in AD. Lecanemab, an FDA-approved antibody therapy for AD, clears Aß plaque from the brain and slows cognitive decline. Here, we show that lecanemab blocks fibrinogen's binding to Aß protofibrils, preventing Aß/fibrinogen-mediated delayed fibrinolysis and clot abnormalities in vitro and in human plasma. Additionally, we show that lecanemab dissociates the Aß/fibrinogen complex and prevents fibrinogen from exacerbating Aß-induced synaptotoxicity in mouse organotypic hippocampal cultures. These findings reveal a possible protective mechanism by which lecanemab may slow disease progression in AD.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Monoclonales Humanizados , Trombosis , Ratones , Humanos , Animales , Fibrinógeno/metabolismo , Sistemas Microfisiológicos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo
2.
bioRxiv ; 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38293058

RESUMEN

Proteinaceous brain inclusions, neuroinflammation, and vascular dysfunction are common pathologies in Alzheimer's disease (AD). Vascular deficits include a compromised blood-brain barrier, which can lead to extravasation of blood proteins like fibrinogen into the brain. Fibrinogen's interaction with the amyloid-beta (Aß) peptide is known to worsen thrombotic and cerebrovascular pathways in AD. Lecanemab, an FDA-approved antibody therapy for AD, shows promising results in facilitating reduction of Aß from the brain and slowing cognitive decline. Here we show that lecanemab blocks fibrinogen's binding to Aß protofibrils, normalizing Aß/fibrinogen-mediated delayed fibrinolysis and clot abnormalities in vitro and in human plasma. Additionally, we show that lecanemab dissociates the Aß/fibrinogen complex and prevents fibrinogen from exacerbating Aß-induced synaptotoxicity in mouse organotypic hippocampal cultures. These findings reveal a possible protective mechanism by which lecanemab may slow disease progression in AD.

3.
Proc Natl Acad Sci U S A ; 120(36): e2309389120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639602

RESUMEN

The amyloid-beta peptide (Aß) is a driver of Alzheimer's disease (AD). Aß monomers can aggregate and form larger soluble (oligomers/protofibrils) and insoluble (fibrils) forms. There is evidence that Aß protofibrils are the most toxic form, but the reasons are not known. Consistent with a critical role for this form of Aß in AD, a recently FDA-approved therapeutic antibody targeted against protofibrils, lecanemab, slows the progression of AD in patients. The plasma contact system, which can promote coagulation and inflammation, has been implicated in AD pathogenesis. This system is activated by Aß which could lead to vascular and inflammatory pathologies associated with AD. We show here that the contact system is preferentially activated by protofibrils of Aß. Aß protofibrils bind to coagulation factor XII and high molecular weight kininogen and accelerate the activation of the system. Furthermore, lecanemab blocks Aß protofibril activation of the contact system. This work provides a possible mechanism for Aß protofibril toxicity in AD and why lecanemab is therapeutically effective.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Péptidos beta-Amiloides/toxicidad , Coagulación Sanguínea , Citoesqueleto , Factor XII
4.
Front Aging Neurosci ; 15: 1064178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967821

RESUMEN

Introduction: Alzheimer's Disease (AD) patients exhibit signs of motor dysfunction, including gait, locomotion, and balance deficits. Changes in motor function often precede other symptoms of AD as well as correlate with increased severity and mortality. Despite the frequent occurrence of motor dysfunction in AD patients, little is known about the mechanisms by which this behavior is altered. Methods and Results: In the present study, we investigated the relationship between cerebrovascular impairment and motor dysfunction in a mouse model of AD (Tg6799). We found an age-dependent increase of extravasated fibrinogen deposits in the cortex and striatum of AD mice. Interestingly, there was significantly decreased cerebrovascular density in the striatum of the 15-month-old as compared to 7-month-old AD mice. We also found significant demyelination and axonal damage in the striatum of aged AD mice. We analyzed striatum-related motor function and anxiety levels of AD mice at both ages and found that aged AD mice exhibited significant impairment of motor function but not in the younger AD mice. Discussion: Our finding suggests an enticing correlation between extravasated fibrinogen, cerebrovascular damage of the striatum, and motor dysfunction in an AD mouse model, suggesting a possible mechanism underlying motor dysfunction in AD.

5.
Blood Adv ; 7(7): 1156-1167, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36409609

RESUMEN

A dysregulated plasma contact system is involved in various pathological conditions, such as hereditary angioedema, Alzheimer disease, and sepsis. We previously showed that the 3E8 anti-high molecular weight kininogen (anti-HK) antibody blocks HK cleavage and bradykinin generation in human plasma ex vivo. Here, we show that 3E8 prevented not only HK cleavage but also factor XI (FXI) and prekallikrein (PK) activation by blocking their binding to HK in mouse plasma in vivo. 3E8 also inhibited contact system-induced bradykinin generation in vivo. Interestingly, FXII activation was also inhibited, likely because of the ability of 3E8 to block the positive feedback activation of FXII by kallikrein (PKa). In human plasma, 3E8 also blocked PK and FXI binding to HK and inhibited both thrombotic (FXI activation) and inflammatory pathways (PK activation and HK cleavage) of the plasma contact system activation ex vivo. Moreover, 3E8 blocked PKa binding to HK and dose-dependently inhibited PKa cleavage of HK. Our results reveal a novel strategy to inhibit contact system activation in vivo, which may provide an effective method to treat human diseases involving contact system dysregulation.


Asunto(s)
Precalicreína , Trombosis , Humanos , Animales , Ratones , Precalicreína/química , Precalicreína/metabolismo , Factor XI/metabolismo , Bradiquinina/farmacología , Bradiquinina/química , Quininógeno de Alto Peso Molecular/química , Quininógeno de Alto Peso Molecular/metabolismo
6.
Res Pract Thromb Haemost ; 6(7): e12815, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36254255

RESUMEN

Background: The contact system is initiated by factor (F) XII activation and the assembly of high molecular weight kininogen (HK) with either FXI or prekallikrein (PK) on a negatively charged surface. Overactivation of this system contributes to thrombosis and inflammation in numerous diseases. To develop effective therapeutics for contact system disorders, a detailed understanding of this pathway is needed. Methods: We performed coagulation assays in normal human plasma and various factor-deficient plasmas. To evaluate how HK-mediated PK and FXI activation contributes to coagulation, we used an anti-HK antibody to block access to domain 6 of HK, the region required for efficient activation of PK and FXI. Results: FXI's binding to HK and its subsequent activation by activated FXII contributes to coagulation. We found that the 3E8 anti-HK antibody can inhibit the binding of FXI or PK to HK, delaying clot formation in human plasma. Our data show that in the absence of FXI, however, PK can substitute for FXI in this process. Addition of activated FXI (FXIa) or activated PK (PKa) abolished the inhibitory effect of 3E8. Moreover, the requirement of HK in intrinsic coagulation can be largely bypassed by adding FXIa. Like FXIa, exogenous PKa shortened the clotting time in HK-deficient plasma, which was not due to feedback activation of FXII. Conclusions: This study improves our understanding of HK-mediated coagulation and provides an explanation for the absence of bleeding in HK-deficient individuals. 3E8 specifically prevented HK-mediated FXI activation; therefore, it could be used to prevent contact activation-mediated thrombosis without altering hemostasis.

7.
Blood Adv ; 6(10): 3090-3101, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35147669

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia. Vascular abnormalities and neuroinflammation play roles in AD pathogenesis. Plasma contact activation, which leads to fibrin clot formation and bradykinin release, is elevated in many AD patients, likely due to the ability of AD's pathogenic peptide ß-amyloid (Aß) to induce its activation. Since overactivation of this system may be deleterious to AD patients, the development of inhibitors could be beneficial. Here, we show that 3E8, an antibody against a 20-amino acid region in domain 6 of high molecular weight kininogen (HK), inhibits Aß-induced intrinsic coagulation. Mechanistically, 3E8 inhibits contact system activation by blocking the binding of prekallikrein (PK) and factor XI (FXI) to HK, thereby preventing their activation and the continued activation of factor XII (FXII). The 3E8 antibody can also disassemble HK/PK and HK/FXI complexes in normal human plasma in the absence of a contact system activator due to its strong binding affinity for HK, indicating its prophylactic ability. Furthermore, the binding of Aß to both FXII and HK is critical for Aß-mediated contact system activation. These results suggest that a 20-amino acid region in domain 6 of HK plays a critical role in Aß-induced contact system activation, and this region may provide an effective strategy to inhibit or prevent contact system activation in related disorders.


Asunto(s)
Enfermedad de Alzheimer , Quininógeno de Alto Peso Molecular , Aminoácidos , Anticuerpos , Factor XI/metabolismo , Factor XII , Humanos , Quininógeno de Alto Peso Molecular/metabolismo , Precalicreína/metabolismo
8.
Res Pract Thromb Haemost ; 5(4): e12504, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977208

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. Extracellular beta-amyloid (Aß) plaques and neurofibrillary tau tangles are classical hallmarks of AD pathology and thus are the prime targets for AD therapeutics. However, approaches to slow or stop AD progression and dementia by reducing Aß production, neutralizing toxic Aß aggregates, or inhibiting tau aggregation have been largely unsuccessful in clinical trials. The contribution of dysregulated vascular components and inflammation is evident in AD pathology. Vascular changes are detectable early in AD progression, so treatment of vascular defects along with anti-Aß/tau therapy could be a successful combination therapeutic strategy for this disease. Here, we explain how vascular dysfunction mechanistically contributes to thrombosis as well as inflammation and neurodegeneration in AD pathogenesis. This review provides evidence that addressing vascular dysfunction in people with AD could be a promising therapeutic strategy.

9.
Blood ; 138(3): 259-272, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-33827130

RESUMEN

Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fibrinolisina/metabolismo , Fibrinólisis/efectos de los fármacos , Quininógenos/metabolismo , Proteolisis/efectos de los fármacos , Acetaminofén/farmacología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Factor XII/genética , Factor XII/metabolismo , Femenino , Fibrinolisina/genética , Humanos , Quininógenos/genética , Masculino , Ratones , Ratones Noqueados , Precalicreína/genética , Precalicreína/metabolismo
10.
J Alzheimers Dis ; 77(1): 59-65, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32651324

RESUMEN

An activated plasma contact system is an abnormality observed in many Alzheimer's disease (AD) patients. Since mild cognitive impairment (MCI) patients often develop AD, we analyzed the status of contact system activation in MCI patients. We found that kallikrein activity, high molecular weight kininogen cleavage, and bradykinin levels- measures of contact system activation- were significantly elevated in MCI patient plasma compared to plasma from age- and education-matched healthy individuals. Changes were more pronounced in MCI patients with impaired short-term recall memory, indicating the possible role of the contact system in early cognitive changes.


Asunto(s)
Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico , Trastornos de la Memoria/sangre , Trastornos de la Memoria/diagnóstico , Memoria a Corto Plazo/fisiología , Anciano , Biomarcadores/sangre , Bradiquinina/sangre , Disfunción Cognitiva/psicología , Estudios de Cohortes , Femenino , Humanos , Calicreínas/sangre , Quininógeno de Alto Peso Molecular/sangre , Masculino , Trastornos de la Memoria/psicología , Persona de Mediana Edad , Pruebas Neuropsicológicas
11.
Neurobiol Dis ; 139: 104833, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173555

RESUMEN

Alzheimer's disease (AD) is characterized by the presence of proteinaceous brain deposits, brain atrophy, vascular dysfunction, and chronic inflammation. Along with cerebral inflammation, peripheral inflammation is also evident in many AD patients. Bradykinin, a proinflammatory plasma peptide, is also linked to AD pathology. For example, bradykinin infusion into the hippocampus causes learning and memory deficits in rats, and blockade of the bradykinin receptor lessens cognitive impairment in AD mouse models. Even though it has been hypothesized that plasma bradykinin could contribute to inflammation in AD, the level of plasma bradykinin and its association with beta-amyloid (Aß) pathology in AD patients had not been explored. Here, we assessed plasma bradykinin levels in AD patients and age-matched non-demented (ND) control individuals. We found significantly elevated plasma bradykinin levels in AD patients compared to ND subjects. Additionally, changes in plasma bradykinin levels were more profound in many AD patients with severe cognitive impairment, suggesting that peripheral bradykinin could play a role in dementia most likely via inflammation. Bradykinin levels in the cerebrospinal fluid (CSF) were reduced in AD patients and exhibited an inverse correlation with the CSF Aß40/Aß42 ratio. We also report that bradykinin interacts with the fibrillar form of Aß and co-localizes with Aß plaques in the post-mortem human AD brain. These findings connect the peripheral inflammatory pathway to cerebral abnormalities and identify a novel mechanism of inflammatory pathology in AD.


Asunto(s)
Enfermedad de Alzheimer/sangre , Bradiquinina/sangre , Disfunción Cognitiva/sangre , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Apolipoproteínas E/líquido cefalorraquídeo , Biomarcadores/sangre , Bradiquinina/líquido cefalorraquídeo , Estudios de Casos y Controles , Disfunción Cognitiva/líquido cefalorraquídeo , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Placa Amiloide/sangre
12.
Proc Natl Acad Sci U S A ; 116(46): 22921-22923, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659032

RESUMEN

Bradykinin is a proinflammatory factor that mediates angioedema and inflammation in many diseases. It is a key player in some types of hereditary angioedema and is involved in septic shock, traumatic injury, Alzheimer's disease (AD), and stroke, among others. Activation of the plasma contact system leads to elevated levels of plasma kallikrein, which cleaves high molecular weight kininogen (HK) to release bradykinin. Drug development for bradykinin-meditated pathologies has focused on designing inhibitors to the enzymes that cleave HK (to prevent bradykinin release) or antagonists of endothelial bradykinin receptors (to prevent downstream bradykinin action). Here we show a strategy to block bradykinin generation by using an HK antibody that binds to HK, preventing its cleavage and subsequent bradykinin release. We show that this antibody blocks dextran sodium sulfate-induced HK cleavage and bradykinin production. Moreover, while the pathogenic AD peptide ß-amyloid (Aß)42 cleaves HK and induces a dramatic increase in bradykinin production, our HK antibody blocked these events from occurring. These results may provide strategies for developing treatments for bradykinin-driven pathologies.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Anticuerpos/administración & dosificación , Bradiquinina/metabolismo , Quininógeno de Alto Peso Molecular/antagonistas & inhibidores , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Bradiquinina/sangre , Humanos , Quininógeno de Alto Peso Molecular/metabolismo
13.
J Neuroinflammation ; 16(1): 172, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462325

RESUMEN

BACKGROUND: Systemic inflammation has been implicated in the progression of many neurodegenerative diseases and may be an important driver of the disease. Dementia and cognitive decline progress more rapidly following acute systemic infection, and systemic inflammation midlife is predictive of the degree of cognitive decline. Plasmin, the active form of the serine protease plasminogen (PLG), is a blood protein that plays physiological roles in fibrinolysis, wound healing, cell signaling, extracellular matrix degradation, and inflammatory regulation. METHODS: Mice were treated with an antisense oligonucleotide to deplete liver-produced PLG prior to systemic challenge with lipopolysaccharide (LPS), a major component of the outer membrane of gram-negative bacteria, known to induce a strong immune response in animals. Following treatment, the innate immune response in the brains of these animals was examined. RESULTS: Mice that were PLG-deficient had dramatically reduced microgliosis and astrogliosis in their brains after LPS injection. We found that blood PLG regulates the brain's innate immune response to systemic inflammatory signaling, affecting the migration of perivascular macrophages into the brain after challenge with LPS. CONCLUSIONS: Depletion of plasma PLG with an antisense oligonucleotide dramatically reduced glial cell activation and perivascular macrophage migration into the brain following LPS injection. This study suggests a critical role for PLG in mediating communication between systemic inflammatory mediators and the brain.


Asunto(s)
Encéfalo/inmunología , Encéfalo/metabolismo , Comunicación Celular/inmunología , Inmunidad Celular/inmunología , Lipopolisacáridos/toxicidad , Plasminógeno/antagonistas & inhibidores , Plasminógeno/metabolismo , Animales , Encéfalo/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Inmunidad Celular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Oligonucleótidos Antisentido/farmacología
14.
Alzheimers Dement (Amst) ; 10: 480-489, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30310850

RESUMEN

INTRODUCTION: Accumulation of ß-amyloid is a pathological hallmark of Alzheimer's disease (AD). ß-Amyloid activates the plasma contact system leading to kallikrein-mediated cleavage of intact high-molecular-weight kininogen (HKi) to cleaved high-molecular-weight kininogen (HKc). Increased HKi cleavage is observed in plasma of AD patients and mouse models by Western blot. For potential diagnostic purposes, a more quantitative method that can measure HKc levels in plasma with high sensitivity and specificity is needed. METHODS: HKi/c, HKi, and HKc monoclonal antibodies were screened from hybridomas using direct ELISA with a fluorescent substrate. RESULTS: We generated monoclonal antibodies recognizing HKi or HKc specifically and developed sandwich ELISAs that can quantitatively detect HKi and HKc levels in human. These new assays show that decreased HKi and increased HKc levels in AD plasma correlate with dementia and neuritic plaque scores. DISCUSSION: High levels of plasma HKc could be used as an innovative biomarker for AD.

15.
Proc Natl Acad Sci U S A ; 115(41): E9687-E9696, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254165

RESUMEN

Two of the most predominant features of the Alzheimer's disease (AD) brain are deposition of ß-amyloid (Aß) plaques and inflammation. The mechanism behind these pathologies remains unknown, but there is evidence to suggest that inflammation may predate the deposition of Aß. Furthermore, immune activation is increasingly being recognized as a major contributor to the pathogenesis of the disease, and disorders involving systemic inflammation, such as infection, aging, obesity, atherosclerosis, diabetes, and depression are risk factors for the development of AD. Plasminogen (PLG) is primarily a blood protein synthesized in the liver, which when cleaved into its active form, plasmin (PL), plays roles in fibrinolysis, wound healing, cell signaling, and inflammatory regulation. Here we show that PL in the blood is a regulator of brain inflammatory action and AD pathology. Depletion of PLG in the plasma of an AD mouse model through antisense oligonucleotide technology dramatically improved AD pathology and decreased glial cell activation in the brain, whereas an increase in PL activity through α-2-antiplasmin (A2AP) antisense oligonucleotide treatment exacerbated the brain's immune response and plaque deposition. These studies suggest a crucial role for peripheral PL in mediating neuroimmune cell activation and AD progression and could provide a link to systemic inflammatory risk factors that are known to be associated with AD development.


Asunto(s)
Enfermedad de Alzheimer/sangre , Encéfalo/metabolismo , Plasminógeno/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Transgénicos , Oligodesoxirribonucleótidos Antisentido/farmacología , Plasminógeno/antagonistas & inhibidores , Plasminógeno/genética
16.
Blood Adv ; 2(9): 954-963, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29700007

RESUMEN

Alzheimer disease (AD) is a neurodegenerative disorder characterized by extracellular ß-amyloid (Aß) deposition. Although peripheral inflammation and cerebrovascular pathology are reported in AD, there is a lack of plasma biomarkers in this field. Because the contact system is triggered in patient plasma, we hypothesized that the hemostasis profile could be a novel biomarker in AD. Here, we assessed the clotting profile in plasma from AD patients and age-matched controls. Utilizing clinically relevant assays, thromboelastography and activated partial thromboplastin time, we found impaired clot initiation and formation rate in AD patient plasma. These coagulation end points correlated with cerebrospinal fluid neurofilament-light levels and cognition and were more profound in younger AD patients. Ex vivo intrinsic clotting of plasma from AD mice expressing human amyloid precursor protein (APP) was also delayed in an age-dependent manner, suggesting that this phenotype is related to APP, the parent protein of Aß. Further analysis of coagulation factors in human plasma indicated that endogenous inhibitor(s) of factors XII and XI in AD plasma contribute to this delayed clotting. Together, these data suggest that delayed clotting in young AD patients is a novel biomarker and that therapies aimed to correct this phenotype might be beneficial in this patient population. Follow-up studies in additional AD patient cohorts are warranted to further evaluate these findings.


Asunto(s)
Enfermedad de Alzheimer/sangre , Precursor de Proteína beta-Amiloide/sangre , Inhibidores de Factor de Coagulación Sanguínea/sangre , Coagulación Sanguínea , Cognición , Factores de Edad , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Biomarcadores/sangre , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Tiempo de Tromboplastina Parcial , Tromboelastografía
17.
Curr Opin Hematol ; 24(5): 427-431, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28661939

RESUMEN

PURPOSE OF REVIEW: To review the evidence that the Alzheimer peptide ß-amyloid interacts with the blood coagulation system and influences the pathophysiology of the disease. RECENT FINDINGS: ß-amyloid can interact with fibrinogen and blood coagulation factor XII and trigger ischemia and inflammation. SUMMARY: ß-amyloid interacts with fibrinogen and factor XII. These interactions can lead to increased clotting, abnormal clot formation, persistent fibrin deposition, and generation of proinflammatory molecules. These events can damage neurons and could contribute to the cognitive decline in Alzheimer's disease patients.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Factor XII/metabolismo , Fibrinógeno/metabolismo , Enfermedad de Alzheimer/patología , Humanos
18.
Blood ; 129(18): 2547-2556, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28242605

RESUMEN

Vascular abnormalities and inflammation are found in many Alzheimer disease (AD) patients, but whether these changes play a causative role in AD is not clear. The factor XII (FXII) -initiated contact system can trigger both vascular pathology and inflammation and is activated in AD patients and AD mice. We have investigated the role of the contact system in AD pathogenesis. Cleavage of high-molecular-weight kininogen (HK), a marker for activation of the inflammatory arm of the contact system, is increased in a mouse model of AD, and this cleavage is temporally correlated with the onset of brain inflammation. Depletion of FXII in AD mice inhibited HK cleavage in plasma and reduced neuroinflammation, fibrinogen deposition, and neurodegeneration in the brain. Moreover, FXII-depleted AD mice showed better cognitive function than untreated AD mice. These results indicate that FXII-mediated contact system activation contributes to AD pathogenesis, and therefore this system may offer novel targets for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Disfunción Cognitiva , Factor XII/metabolismo , Enfermedades Vasculares , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Disfunción Cognitiva/sangre , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Quininógeno de Alto Peso Molecular/sangre , Ratones , Ratones Transgénicos , Enfermedades Vasculares/sangre , Enfermedades Vasculares/genética , Enfermedades Vasculares/patología , Enfermedades Vasculares/fisiopatología
19.
Matrix Biol ; 56: 42-56, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27234308

RESUMEN

Laminins are the most abundant non-collagenous basement membrane (BM) components, composed of an α, ß and γ chain. The laminin γ1 chain, encoded by LAMC1, is the most abundant γ chain. The main laminin isoforms in the dermo-epidermal junction (DEJ) are laminin-332, laminin-511 and laminin-211, the latter being restricted to the lower part of hair follicles (HFs). Complete deletion of LAMC1 results in lethality around embryonic day 5.5. To study the function of laminin γ1 containing isoforms in skin development and maturation after birth, we generated mice lacking LAMC1 expression in basal keratinocytes (LAMC1EKO) using the keratin 14 (K14) Cre/loxP system. This deletion resulted in loss of keratinocyte derived laminin-511 and in deposition of fibroblast derived laminin-211 throughout the whole DEJ. The DEJ in areas between hemidesmosomes was thickened, whereas hemidesmosome morphology was normal. Most strikingly, LAMC1EKO mice showed delayed HF morphogenesis accompanied by reduced proliferation of hair matrix cells and impaired differentiation of hair shafts (HS). However, this deletion did not interfere with early HF development, since placode numbers and embryonic hair germ formation were not affected. Microarray analysis of skin revealed down regulation of mainly different hair keratins. This is due to reduced expression of transcription factors such as HoxC13, FoxN1, FoxQ1 and Msx2, known to regulate expression of hair keratins. While the role of laminin-511 in signaling during early hair germ formation and elongation phase has been described, we here demonstrate that epidermal laminin-511 is also a key regulator for later hair development and HS differentiation.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Laminina/genética , Animales , Membrana Basal/metabolismo , Diferenciación Celular , Células Cultivadas , Eliminación de Gen , Expresión Génica , Folículo Piloso/citología , Folículo Piloso/embriología , Queratinocitos/metabolismo , Laminina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis
20.
Proc Natl Acad Sci U S A ; 112(13): 4068-73, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775543

RESUMEN

Alzheimer's disease (AD) is characterized by accumulation of the ß-amyloid peptide (Aß), which likely contributes to disease via multiple mechanisms. Increasing evidence implicates inflammation in AD, the origins of which are not completely understood. We investigated whether circulating Aß could initiate inflammation in AD via the plasma contact activation system. This proteolytic cascade is triggered by the activation of the plasma protein factor XII (FXII) and leads to kallikrein-mediated cleavage of high molecular-weight kininogen (HK) and release of proinflammatory bradykinin. Aß has been shown to promote FXII-dependent cleavage of HK in vitro. In addition, increased cleavage of HK has been found in the cerebrospinal fluid of patients with AD. Here, we show increased activation of FXII, kallikrein activity, and HK cleavage in AD patient plasma. Increased contact system activation is also observed in AD mouse model plasma and in plasma from wild-type mice i.v. injected with Aß42. Our results demonstrate that Aß42-mediated contact system activation can occur in the AD circulation and suggest new pathogenic mechanisms, diagnostic tests, and therapies for AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Factor XII/metabolismo , Factor XIIa/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores/metabolismo , Estudios de Casos y Controles , Demencia/genética , Demencia/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Factor XII/genética , Factor XIIa/genética , Femenino , Humanos , Inflamación , Calicreínas/sangre , Quininógenos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Fragmentos de Péptidos/metabolismo , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...