Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2403632, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837455

RESUMEN

Nanocrystalline (nc) metals are generally strong yet thermally unstable, rendering them difficult to process and unsuitable for use, particularly at elevated temperatures. Nc multicomponent and high-entropy alloys (HEAs) are found to offer enhanced thermal stability but only in a few empirically discovered systems out of a vast compositional space. In response, this work develops a combinatorial strategy to accelerate the discovery of nc-(TiZrHf)x(NbTa)1- x alloy library with distinct thermal stability, in terms of phases and grain sizes. Based on synchrotron X-ray diffraction and electron microscopy characterizations, a phase transition is observed from amorphous-crystalline nanocomposites to a body-centered cubic (bcc) phase upon annealing. With increased NbTa content (decreased x value), the system tends to achieve thermally stable dual bcc phases upon annealing; in contrast, alloys with increased TiZrHf content (x > 0.6) maintain a single-composition nanocomposite state, impeding crystallization and grain growth. This investigation not only broadens the understanding of thermal stability but also delves into the onset of crystallization in HEA systems.

2.
Nat Commun ; 15(1): 1450, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365786

RESUMEN

High-entropy alloy (HEA) nanoparticles (NPs) exhibit unusual combinations of functional properties. However, their scalable synthesis remains a significant challenge requiring extreme fabrication conditions. Metal salts are often employed as precursors because of their low decomposition temperatures, yet contain potential impurities. Here, we propose an ultrafast (< 100 ms), one-step method that enables the continuous synthesis of HEA NPs directly from elemental metal powders via in-flight alloying. A high-temperature plasma jet ( > 5000 K) is employed for rapid heating/cooling (103 - 105 K s-1), and demonstrates the synthesis of CrFeCoNiMo HEA NPs ( ~ 50 nm) at a high rate approaching 35 g h-1 with a conversion efficiency of 42%. Our thermofluid simulation reveals that the properties of HEA NPs can be tailored by the plasma gas which affects the thermal history of NPs. The HEA NPs demonstrate an excellent light absorption of > 96% over a wide spectrum, representing great potential for photothermal conversion of solar energy at large scales. Our work shows that the thermal plasma process developed could provide a promising route towards industrial scale production of HEA NPs.

3.
Nanoscale ; 14(20): 7561-7568, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35478250

RESUMEN

Refractory high-entropy alloys (RHEAs) that consist of multiple principal refractory elements have attracted significant attention due to their many interesting and useful properties for structural applications. However, so far, a vast majority of reports on RHEAs focused on a few well-known compositions such as NbMoTaW, NbMoTaWV, and TiZrHfNbTa. The discovery of new RHEAs with enhanced mechanical properties has been highly desirable. Here we produce two new RHEA thin films - TiZrHfNbTaMo and TiZrHfNbTaW, by co-sputtering Mo or W on a previously studied TiZrHfNbTa RHEA system. The TiZrHfNbTaMo and TiZrHfNbTaW thin films exhibit an amorphous state, while the TiZrHfNbTa one shows a nanocrystalline structure. Using the nanoindentation method, we show that the addition of Mo or W in the TiZrHfNbTa during the co-sputtering process increases the hardness while resulting in comparable elastic moduli. Through the strain rate sensitivity tests of the thin films, we obtain their activation volumes and discuss their deformation mechanisms in the nanoindentation tests.

4.
Phys Chem Chem Phys ; 19(5): 4019-4029, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28106897

RESUMEN

Magnesium hydride (MgH2) exhibits long-term stability and has recently been developed as a safe alternative to store hydrogen in the solid state, due to its high capacity of 7.6 wt% H2 and low cost compared to other metal hydrides. However, the high activation energy and poor kinetics of MgH2 lead to inadequate hydrogen storage properties, resulting in low energy efficiency. Nano-catalysis is deemed to be the most effective strategy in improving the kinetics performance of hydrogen storage materials. In this work, robust and efficient architectures of carbon-wrapped transition metal (Co/C, Ni/C) nanoparticles (8-16 nm) were prepared and used as catalysts in the MgH2 system via ball milling to improve its de/rehydrogenation kinetics. Between the two kinds of nano-catalysts, the Ni/C nanoparticles exhibit a better catalytic efficiency. MgH2 doped with 6% Ni/C (MgH2-6%Ni/C) exhibits a peak dehydrogenation temperature of 275.7 °C, which is 142.7, 54.2 and 32.5 °C lower than that of commercial MgH2, milled MgH2 and MgH2 doped with 6% Co/C (MgH2-6%Co/C), respectively. MgH2 doped with 6% Ni/C can release about 6.1 wt% H2 at 250 °C. More importantly, the dehydrogenated MgH2-6%Ni/C is even able to uptake 5.0 wt% H2 at 100 °C within 20 s. Moreover, a cycling test of MgH2 doped with 8% Ni/C demonstrates its excellent hydrogen absorption/desorption stability with respect to both capacity (up to 6.5 wt%) and kinetics (within 8 min at 275 °C for dehydrogenation and within 10 s at 200 °C for rehydrogenation). Mechanistic research reveals that the in situ formed Mg2Ni and Mg2NiH4 nanoparticles can be regarded as advanced catalytically active species in the MgH2-Ni/C system. Meanwhile, the carbon attached around the surface of transition metal nanoparticles can successfully inhibit the aggregation of the catalysts and achieve the steadily, prompting de/rehydrogenation during the subsequent cycling process. The intrinsic catalytic effects and the uniform distributions of Mg2Ni and Mg2NiH4 result in a favorable catalytic efficiency and cycling stability. Nano-catalysts with this kind of morphology can also be applied to other metal hydrides to improve their kinetics performance and cycling stability.

5.
Nanoscale ; 8(31): 14898-908, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27464228

RESUMEN

Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (∼10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol(-1) and 71 kJ mol(-1), respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient catalysis on the RHCs, provides a new inspiration to practical hydrogen storage application for high performance complex hydrides.

6.
Mol Plant Microbe Interact ; 22(9): 1143-50, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19656048

RESUMEN

Fusarium graminearum (teleomorph, Gibberella zeae) causes head blight of cereals and contaminates grains with trichothecene mycotoxins that are harmful to humans and domesticated animals. Control of Fusarium head blight relies on carbendazim (MBC) in China, but resistance to MBC in F. graminearum is now widespread. Sixty-seven strains were evaluated for trichothecene production in shake culture or in the field. The strains included 60 wild-type strains (30 MBC-resistant and 30 MBC-sensitive), three MBC-resistant site-directed mutants at codon 167 in beta(2)-tubulin, three MBC-sensitive site-directed mutants at codon 240 in beta(2)-tubulin, and their MBC-sensitive wild-type progenitor strain ZF21. The incidence of infected spikelets and the amount of F. graminearum DNA in field grain (AFgDNA) also were evaluated for all strains. MBC resistance increased trichothecene production in shake culture or in the field. Although MBC resistance did not change the incidence of infected spikelets, it did increase AFgDNA. Tri5 gene expression increased in MBC-resistant strains grown in shake culture. We found a significant exponential relationship between trichothecene production and Tri5 gene expression in shake culture and a linear relationship between the incidence of infected spikelets or AFgDNA and trichothecene production in field grain.


Asunto(s)
Antifúngicos/farmacología , Bencimidazoles/farmacología , Carbamatos/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Fusarium/efectos de los fármacos , Fusarium/patogenicidad , Tricotecenos/biosíntesis , Bencimidazoles/metabolismo , Southern Blotting , Carbamatos/metabolismo , Fusarium/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Pruebas de Sensibilidad Microbiana , Mutagénesis Sitio-Dirigida , Reproducibilidad de los Resultados , Factores de Tiempo , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...