Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37447019

RESUMEN

Lycoris is an important plant with both medicinal and ornamental values. However, it does not have an efficient genetic transformation system, which makes it difficult to study gene function of the genus. Virus-induced gene silencing (VIGS) is an effective technique for studying gene functions in plants. In this study, we develop an efficient virus-induced gene-silencing (VIGS) system using the leaf tip needle injection method. The widely used TRV vector is constructed, and the Cloroplastos Alterados 1 (CLA1) and Phytoene Desaturase (PDS) genes are selected as visual indicators in the VIGS system. As a result, it is observed that leaves infected with TRV-LcCLA1 and TRV-LcPDS both show a yellowing phenotype (loss of green), and the chlorosis range of TRV-LcCLA1 was larger and deeper than that of TRV-LcPDS. qRT-PCR results show that the expression levels of LcCLA1 and LcPDS are significantly reduced, and the silencing efficiency of LcCLA1 is higher than that of LcPDS. These results indicate that the VIGS system of L. chinensis was preliminarily established, and LcCLA1 is more suitable as a gene-silencing indicator. For the monocotyledonous plant leaves with a waxy surface, the leaf tip injection method greatly improves the infiltration efficiency. The newly established VIGS system will contribute to gene functional research in Lycoris species.

2.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768747

RESUMEN

Lycoris radiata, belonging to the Amaryllidaceae family, is a well-known Chinese traditional medicinal plant and susceptible to many stresses. WRKY proteins are one of the largest families of transcription factors (TFs) in plants and play significant functions in regulating physiological metabolisms and abiotic stress responses. The WRKY TF family has been identified and investigated in many medicinal plants, but its members and functions are not identified in L. radiata. In this study, a total of 31 L. radiata WRKY (LrWRKY) genes were identified based on the transcriptome-sequencing data. Next, the LrWRKYs were divided into three major clades (Group I-III) based on the WRKY domains. A motif analysis showed the members within same group shared a similar motif component, indicating a conservational function. Furthermore, subcellular localization analysis exhibited that most LrWRKYs were localized in the nucleus. The expression pattern of the LrWRKY genes differed across tissues and might be important for Lycoris growth and flower development. There were large differences among the LrWRKYs based on the transcriptional levels under drought stress and MeJA treatments. Moreover, a total of 18 anthocyanin components were characterized using an ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis and pelargonidin-3-O-glucoside-5-O-arabinoside as well as cyanidin-3-O-sambubioside were identified as the major anthocyanin aglycones responsible for the coloration of the red petals in L. radiata. We further established a gene-to-metabolite correlation network and identified LrWRKY3 and LrWRKY27 significant association with the accumulation of pelargonidin-3-O-glucoside-5-O-arabinoside in the Lycoris red petals. These results provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in anthocyanin biosynthesis and in response to drought stress and MeJA treatment.


Asunto(s)
Lycoris , Lycoris/metabolismo , Proteínas de Plantas/metabolismo , Sequías , Antocianinas , Espectrometría de Masas en Tándem , Glucósidos , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Filogenia
3.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430515

RESUMEN

The transition from vegetative to reproductive growth is important for controlling the flowering of Lycoris radiata. However, the genetic control of this complex developmental process remains unclear. In this study, 18 shoot apical meristem (SAM) samples were collected from early-, mid- and late-flowering populations during floral bud differentiation. The histological analysis of paraffin sections showed that the floral bud differentiation could be divided into six stages; the differentiation time of the early group was earlier than that of the middle and late groups, and the late group was the latest. In different populations, some important differential genes affecting the flowering time were identified by transcriptome profiles of floral bud differentiation samples. Weighted gene co-expression network analysis (WGCNA) was performed to enrich the gene co-expression modules of diverse flowering time populations (FT) and floral bud differentiation stages (ST). In the MEyellow module, five core hub genes were identified, including CO14, GI, SPL8, SPL9, and SPL15. The correlation network of hub genes showed that they interact with SPLs, AP2, hormone response factors (auxin, gibberellin, ethylene, and abscisic acid), and several transcription factors (MADS-box transcription factor, bHLH, MYB, and NAC3). It suggests the important role of these genes and the complex molecular mechanism of floral bud differentiation and flowering time in L. radiata. These results can preliminarily explain the molecular mechanism of floral bud differentiation and provide new candidate genes for the flowering regulation of Lycoris.


Asunto(s)
Lycoris , Reproducción , Redes Reguladoras de Genes , Giberelinas , Ácido Abscísico , Factores de Transcripción/genética
4.
Biomolecules ; 12(7)2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35883454

RESUMEN

Lycoris is a summer bulbous flower that commonly needs to go through a long period of vegetative growth for 3 to 5 years before flowering. Plant flowering is regulated by a complex genetic network. Compared with most perennial flowers, knowledge on the molecular mechanism responsible for floral transition in bulbous flowers is lacking, and only a few genes that regulate flowering have been identified with few reports on the floral transition in Lycoris. In this study, we identified many differentially expressed genes (DEGs) and transcription factors (TFs) by RNA-Seq in L. chinensis bulbs of different ages, including one- to four-year-old nonflowering bulbs and four-year-old flowering bulbs. Some DEGs were enriched in Gene Ontology (GO) terms between the three- and four-year-old bulbs, and there most genes were enriched in terms of metabolic process and catalytic activity. In the four-year old bulbs, most of the DEGs that may be involved in flowering were classified under the GO term biological process, which was a totally different result from the vegetative bulbs. Some DEGs between flowering and nonflowering bulbs were enriched in plant hormone signal transduction, including the hormones auxin, cytokinin, abscisic acid, and ethylene, but no DEGs were enriched in the gibberellin pathway. Auxin is the main endogenous phytohormone involved in bulb growth and development, but cytokinin, abscisic acid, and ethylene were shown to increase in flowering bulbs. In addition, energy-metabolism-related genes maintain a high expression level in large bulbs, and some positive regulators (SPL, COL, and AP1) and early flowering genes were also shown to be highly expressed in the meristems of flowering bulbs. It suggested that sugar molecules may be the energy source that regulates the signal transduction of flowering by connecting with phytohormone signaling in Lycoris. A total of 1911 TFs were identified and classified into 89 categories, where the top six families with the largest gene numbers were C2H2, NAC, AP2/ERF-ERF, C3H, MYB-related, and WRKY. Most DEGs were in the AP2/ERF-ERF family, and most of them were downregulated in 4-year-old flowering bulbs. A number of families were reported to be involved in plant flowering, including NAC, AP2/ERF, MYB, WRKY, bZIP, MADS, and NF-Y. These results can act as a genetic resource to aid in the explanation of the genetic mechanism responsible for the flowering of Lycoris and other bulbous flowers.


Asunto(s)
Lycoris , Reguladores del Crecimiento de las Plantas , Ácido Abscísico , Preescolar , Citocininas , Etilenos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Humanos , Ácidos Indolacéticos , Lactante , Lycoris/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
5.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445687

RESUMEN

Leaf coloration changes evoke different photosynthetic responses among different poplar cultivars. The aim of this study is to investigate the photosynthetic difference between a red leaf cultivar (ZHP) and a green leaf (L2025) cultivar of Populus deltoides. In this study, 'ZHP' exhibited wide ranges and huge potential for absorption and utilization of light energy and CO2 concentration which were similar to those in 'L2025' and even showed a stronger absorption for weak light. However, with the increasing light intensity and CO2 concentration, the photosynthetic capacity in both 'L2025' and 'ZHP' was gradually restricted, and the net photosynthetic rate (Pn) in 'ZHP' was significantly lower than that in 'L2025'under high light or high CO2 conditions, which was mainly attributed to stomatal regulation and different photosynthetic efficiency (including the light energy utilization efficiency and photosynthetic CO2 assimilation efficiency) in these two poplars. Moreover, the higher anthocyanin content in 'ZHP' than that in 'L2025' was considered to be closely related to the decreased photosynthetic efficiency in 'ZHP'. According to the results from the JIP-test, the capture efficiency of the reaction center for light energy in 'L2025' was significantly higher than that in 'ZHP'. Interestingly, the higher levels of light quantum caused relatively higher accumulation of QA- in 'L2025', which blocked the electron transport and weakened the photosystem II (PSII) performance as compared with 'ZHP'; however, the decreased capture of light quantum also could not promote the utilization of light energy, which was the key to the low photosynthetic efficiency in 'ZHP'. The differential expressions of a series of photosynthesis-related genes further promoted these specific photosynthetic processes between 'L2025' and 'ZHP'.


Asunto(s)
Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Populus/fisiología , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Color , Transporte de Electrón/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Populus/genética , Populus/metabolismo
6.
Biology (Basel) ; 10(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34439948

RESUMEN

The genus Lycoris (Amaryllidaceae) consists of about 20 species, which is endemic to East Asia. Although the Lycoris species is of great horticultural and medical importance, challenges in accurate species identification persist due to frequent natural hybridization and large-scale intraspecific variation. In this study, we sequenced chloroplast genomes of four Lycoris species and retrieved seven published chloroplast (cp) genome sequences in this genus for comparative genomic and phylogenetic analyses. The cp genomes of these four newly sequenced species were found to be 158,405-158,498 bp with the same GC content of 37.8%. The structure of the genomes exhibited the typical quadripartite structure with conserved gene order and content. A total of 113 genes (20 duplicated) were identified, including 79 protein-coding genes (PCGs), 30 tRNAs, and 4 rRNAs. Phylogenetic analysis showed that the 11 species were clustered into three main groups, and L. sprengeri locate at the base of Lycoriss. The L. radiata was suggested to be the female donor of the L. incarnata, L. shaanxiensis, and L. squamigera. The L. straminea and L. houdyshelii may be derived from L. anhuiensis, L. chinensis, or L. longituba. These results could not only offer a genome-scale platform for identification and utilization of Lycoris but also provide a phylogenomic framework for future studies in this genus.

7.
Phys Chem Chem Phys ; 20(17): 11833-11842, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29658554

RESUMEN

Sintering is a long-standing issue especially in high temperature catalytic applications. In this paper, we report an effective method to slow down metal particle migration and coalescence (PMC) by using a thermally stable alumina support. Noteworthily, the alumina sample was developed from AlP fumigation residue, which is a very dangerous substance for living creatures and environment protection. By optimizing the heated hydrolysis and ball-milling conditions, we recycled a phosphate-stabilized alumina material that retained a 117 m2 g-1 surface area after 1050 °C hydrothermal aging. The catalyst using this newly developed alumina support had Pd dispersion 1.7 times higher than that using a commercial alumina support after aging. The kinetics and XPS experiments showed that phosphate neither participated in the catalytic reaction process nor changed the active sites. This catalyst also exhibited extraordinary water tolerance and durability, making it a promising material in automotive exhaust purification and other catalytic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA