Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158083

RESUMEN

Sugar transport across membranes is critical for plant development and yield. However, an analysis of the role of intracellular sugar transporters in senescence is lacking. Here, we characterized the role of Senescence-Associated Sugar Transporter1 (SAST1) during senescence in Arabidopsis (Arabidopsis thaliana). SAST1 expression was induced in leaves during senescence and after the application of abscisic acid (ABA). SAST1 is a vacuolar protein that pumps glucose out of the cytosol. sast1 mutants exhibited a stay-green phenotype during developmental senescence, after the darkening of single leaves, and after ABA feeding. To explain the stay-green phenotype of sast1 mutants, we analyzed the activity of the glucose-induced master-regulator TOR (target of rapamycin), which is responsible for maintaining a high anabolic state. TOR activity was higher in sast1 mutants during senescence compared to wild types, whereas the activity of its antagonist, SNF1-related protein kinase 1 (SnRK1), was reduced in sast1 mutants under senescent conditions. This deregulation of TOR and SnRK1 activities correlated with high cytosolic glucose levels under senescent conditions in sast1 mutants. Although sast1 mutants displayed a functional stay-green phenotype, their seed yield was reduced. These analyses place the activity of SAST1 in the last phase of a leaf's existence in the molecular program required to complete its life cycle.

2.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39127967

RESUMEN

Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.

3.
J Funct Biomater ; 15(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39194674

RESUMEN

Low molecular weight chitosan selenium nanoparticles (LCS-SeNPs), a biologically active compound derived from selenium polysaccharides, have demonstrated potential in addressing obesity. However, the mechanism through which LCS-SeNPs alleviate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) remains unclear. Our results elucidated that LCS-SeNPs significantly inhibited fat accumulation and markedly improved the intestinal barrier by increasing mucus secretion from goblet cells. Moreover, LCS-SeNPs reshaped intestinal flora composition by increasing the abundance of mucus-associated microbiota (Bifidobacterium, Akkermansia, and Muribaculaceae_unclassified) and decreasing the abundance of obesity-contributed bacterium (Anaerotruncus, Lachnoclostridium, and Proteus). The modulation of intestinal microbiota by LCS-SeNPs influenced several metabolic pathways, including bile acid secretion, purine metabolites, and tryptophan derivation. Meanwhile, glycocholic acid and tauro-beta-muricholic acid were significantly reduced in the LCS-SeNP group. Our study suggests the crucial role of intestinal microbiota composition and metabolism, providing a new theoretical foundation for utilizing selenium polysaccharides in the intervention of HFD-induced NAFLD.

4.
Biotechnol Biofuels Bioprod ; 17(1): 111, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129014

RESUMEN

Monogalactosyldiacylglycerol (MGDG), a predominant photosynthetic membrane lipid derived from plants and microalgae, has important applications in feed additives, medicine, and other fields. The low content and various structural stereoselectivity differences of MGDG in plants limited the biological extraction or chemical synthesis of MGDG, resulting in a supply shortage of monogalactosyldiacylglycerol with a growing demand. Herein, we established Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol for the first time. Heterologous production of monogalactosyldiacylglycerol was achieved by overexpression of codon-optimized monogalactosyldiacylglycerol synthase gene MGD1, the key Kennedy pathway genes (i.e. GAT1, ICT1, and PAH1), and multi-copy integration of the MGD1 expression cassette. The final engineered strain (MG-8) was capable of producing monogalactosyldiacylglycerol with titers as high as 16.58 nmol/mg DCW in a shake flask and 103.2 nmol/mg DCW in a 5 L fed-batch fermenter, respectively. This is the first report of heterologous biosynthesis of monogalactosyldiacylglycerol in microorganisms, which will provide a favorable reference for study on heterologous production of monogalactosyldiacylglycerol in yeasts.

5.
Medicine (Baltimore) ; 103(28): e38400, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996165

RESUMEN

The study investigated the health care workers' knowledge, attitudes, and practice levels regarding occupational protection against antineoplastic drugs (ADs) via analysis of latent classes and their influencing factors. A convenience sampling method was used to select healthcare workers from 7 hospitals in southern China between April and August 2023. A questionnaire based on literature analysis, brainstorming, and Delphi method was used to investigate the knowledge, practice, and attitudes of healthcare workers exposed to ADs for appropriate occupational protection intervention, followed by latent class analysis. The factors influencing latent classes were identified via single-factor analysis and multiple logistic regression. A total of 322 healthcare workers from departments using ADs were surveyed. The knowledge score associated with occupational protection against ADs was 31.95 ±â€…7.38. The attitude score was 21.08 ±â€…2.729, while the practice score was 36.54 ±â€…9.485. The overall score was 89.57 ±â€…15.497. The healthcare workers were divided into 4 latent classes based on their knowledge, attitude, and practice associated with occupational protection measures against ADs. Healthcare workers in the 4 categories showed significance differences based on professional title, marital status, educational background, and frequency of exposure to ADs (P < .05). The knowledge, attitude, and practice levels of healthcare workers engaged in ADs at work can be divided into 4 latent classes. Despite their increased awareness of the hazards associated with ADs and their attitudes toward protection, the healthcare workers displayed poor knowledge and implementation of occupational protection measures.


Asunto(s)
Antineoplásicos , Conocimientos, Actitudes y Práctica en Salud , Personal de Salud , Análisis de Clases Latentes , Exposición Profesional , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/estadística & datos numéricos , Exposición Profesional/prevención & control , Estudios Transversales , Femenino , Masculino , Adulto , Antineoplásicos/efectos adversos , Personal de Salud/estadística & datos numéricos , Personal de Salud/psicología , Factores de Riesgo , China , Encuestas y Cuestionarios , Persona de Mediana Edad , Actitud del Personal de Salud
6.
Metab Eng ; 84: 83-94, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897449

RESUMEN

Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of cis-trans nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for cis-trans nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of Pichia pastoris cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and cis-trans nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of ERG20, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of cis-trans nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of P. pastoris cell factories for sustainable production of MIAs and other plant natural products.


Asunto(s)
Ingeniería Metabólica , Monoterpenos Acíclicos/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Terpenos/metabolismo
7.
Nat Commun ; 15(1): 5221, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890329

RESUMEN

Latent bioreactive unnatural amino acids (Uaas) have been widely used in the development of covalent drugs and identification of protein interactors, such as proteins, DNA, RNA and carbohydrates. However, it is challenging to perform high-throughput identification of Uaa cross-linking products due to the complexities of protein samples and the data analysis processes. Enrichable Uaas can effectively reduce the complexities of protein samples and simplify data analysis, but few cross-linked peptides were identified from mammalian cell samples with these Uaas. Here we develop an enrichable and multiple amino acids reactive Uaa, eFSY, and demonstrate that eFSY is MS cleavable when eFSY-Lys and eFSY-His are the cross-linking products. An identification software, AixUaa is developed to decipher eFSY mass cleavable data. We systematically identify direct interactomes of Thioredoxin 1 (Trx1) and Selenoprotein M (SELM) with eFSY and AixUaa.


Asunto(s)
Aminoácidos , Tiorredoxinas , Aminoácidos/metabolismo , Aminoácidos/química , Humanos , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/química , Reactivos de Enlaces Cruzados/química , Unión Proteica , Péptidos/metabolismo , Péptidos/química , Selenoproteínas/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Programas Informáticos , Proteínas/metabolismo , Proteínas/química , Células HEK293
8.
Methods Mol Biol ; 2760: 157-167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468088

RESUMEN

Pichia pastoris is known for its excellent protein expression ability. As an industrial methyl nutritional yeast, it can effectively utilize methanol as the sole carbon source, serving as a potential platform for C1 biotransformation. Unfortunately, the lack of synthetic biology tools in P. pastoris limits its broad applications, particularly when multigene pathways should be manipulated. Here, the CRISPR/Cas9 system is established to efficiently integrate multiple heterologous genes to construct P. pastoris cell factories. In this protocol, with the 2,3-butanediol (BDO) biosynthetic pathway as a representative example, the procedures to construct P. pastoris cell factories are detailed using the established CRISPR-based multiplex genome integration toolkit, including donor plasmid construction, competent cell preparation and transformation, and transformant verification. The application of the CRISPR toolkit is demonstrated by the construction of engineered P. pastoris for converting methanol to BDO. This lays the foundation for the construction of P. pastoris cell factories harboring multi-gene biosynthetic pathways for the production of high-value compounds.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomycetales , Sistemas CRISPR-Cas/genética , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/metabolismo , Butileno Glicoles/metabolismo
9.
Hortic Res ; 10(8): uhad123, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554344

RESUMEN

Melon (Cucumis melo L.) has a long history of cultivation worldwide. During cultivation, domestication, and selection breeding, the sugar content of mature melon fruits has been significantly increased. Compared with unsweet melon and wild melon, rapid sucrose accumulation can occur in the middle and late stages of sweet melon fruit development. The phloem unloading pathway during the evolution and development of melon fruit has not been identified and analyzed. In this study, the phloem unloading pathway and the function of related sugar transporters in cultivated and wild melon fruits were analyzed by CFDA [5(6)-carbofluorescein diacetate] and esculin tracing, cytological pathway observation, qRT-PCR, and gene function analysis, etc. Results show that the phloem unloading pathway of wild melon fruit is largely symplastic, whereas the phloem unloading pathway of cultivated melon fruit shifts from symplastic to apoplasmic during development. According to a fruit grafting experiment, the fruit sink accumulates sugars independently. Correlation analysis showed that the expression amounts of several sucrose transporter genes were positively correlated with the sucrose content of melon fruit. Furthermore, CmSWEET10 was proved to be a sucrose transporter located on the plasma membrane of the phloem and highly expressed in the premature stage of sweet melon fruits, which means it may be involved in phloem apoplast unloading and sucrose accumulation in sweet melon fruits. Finally, we summarize a functional model of related enzymes and sugar transporters involved in the apoplast unloading of sweet melon fruits during enlargement and sucrose accumulation.

10.
Plant Physiol ; 193(3): 2141-2163, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37427783

RESUMEN

Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fructosa , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Transporte Biológico/genética , Arabidopsis/metabolismo , Carbohidratos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
11.
Hepatol Int ; 17(4): 850-859, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37067675

RESUMEN

BACKGROUND AND AIMS: Liver transplantation (LT) is the primary curative option for cirrhotic patients with early-stage hepatocellular carcinoma (HCC). However, tumor recurrence occurs in 15-20% of cases with unfavorable prognosis. We have developed a library of T cell receptors (TCRs) specific for different hepatitis B virus (HBV) antigens, restricted by different molecules of human leucocyte antigen (HLA)-class I, to redirect T cells against HBV antigens (Banu in Sci Rep 4:4166, 2014). We further demonstrated that these transiently functional T cells specific for HBV obtained through messenger RNA (mRNA) electroporation can eliminate HCC cells expressing HBV antigens in vitro and in vivo (Kah in J Clin Invest 127:3177-3188, 2017). A phase I clinical trial for patients with HCC recurrence post-liver transplant was conducted to assess the safety, tolerability, and anti-tumor efficacy of transiently functional HBV-TCR T cells. Here, we report the clinical findings with regard to the safety and anti-tumor efficacy of mRNA electroporated HBV-specific TCR-T cells. (ClinicalTrials.gov identifier: NCT02719782). PATIENTS AND METHODS: A total of six patients with HBV-positive recurrent HCC post-liver transplant and HLA-matched to TCR targeting hepatitis B surface antigen (HBsAg) or hepatitis B core antigen (HBcAg) (HLA-A*02:01/HBsAg, HLA-A*11:01/HBcAg, HLA-B*58:01/HBsAg or HLA-C*08:01/HBsAg) were enrolled in this study. The primary objective was to assess the safety of short-lived mRNA electroporated HBV-TCR T cells based on the incidence and severity of the adverse event (AE) graded per National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE), Version 4.0. The secondary objective was to determine the effectiveness of HBV-TCR T cells as per RECIST 1.1 criteria. Patients were followed up for survival for 2 years post-end of treatment. RESULTS: The median age of the six patients was 35.5 years (range: 28-47). The median number of HBV-TCR T cell infusions administered was 6.5 (range: 4-12). The treatment-related AE included grade 1 pyrexia. This study reported no cytokine release syndrome nor neurotoxicity. One patient remained alive and five were deceased at the time of the data cutoff (30 April 2020). CONCLUSION: This study has demonstrated that multiple infusions of mRNA electroporated HBV-specific TCR T cells were well-tolerated in patients with HBV-positive recurrent HCC post-liver transplant.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Trasplante de Hígado , Humanos , Adulto , Persona de Mediana Edad , Virus de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B , Neoplasias Hepáticas/patología , Antígenos del Núcleo de la Hepatitis B/uso terapéutico , ARN Mensajero , Recurrencia Local de Neoplasia/terapia , Recurrencia Local de Neoplasia/complicaciones , Receptores de Antígenos de Linfocitos T/genética , Hepatitis B/complicaciones
12.
Arch Microbiol ; 205(4): 153, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000333

RESUMEN

Long non-coding RNAs (lncRNAs) play an important role in eukaryotic cells. However, there is no report of lncRNAs in endophytic fungi Calcarisporium arbuscula. Here, in Calcarisporium arbuscula NRRL 3705, an endophytic fungus predominantly producing mycotoxins aurovertins, the genome-wide identification of lncRNAs was carried out based on RNA-Seq. Totally, 1332 lncRNAs were identified, including 1082 long intergenic noncoding RNAs, 64 long intronic noncoding RNAs and 186 long noncoding natural antisense transcripts. The average length of lncRNA and mRNA were 254 and 1102 bp, respectively. LncRNAs were shorter, with fewer exons and lower expression levels. Moreover, there were 39 up-regulated lncRNAs and 10 down-regulated lncRNAs in the ΔaurA mutant, which lacks the aurovertin biosynthetic enzyme AurA. Interestingly, expression of genes related to the metabolism of linoleic acid and methane were significantly down regulated in the ΔaurA mutant. This study enriches the endophytic fungal lncRNA database and provide a basis for further research.


Asunto(s)
Hypocreales , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Hypocreales/genética , Hypocreales/metabolismo
13.
Sensors (Basel) ; 23(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36991930

RESUMEN

Insect pests have always been one of the main hazards affecting crop yield and quality in traditional agriculture. An accurate and timely pest detection algorithm is essential for effective pest control; however, the existing approach suffers from a sharp performance drop when it comes to the pest detection task due to the lack of learning samples and models for small pest detection. In this paper, we explore and study the improvement methods of convolutional neural network (CNN) models on the Teddy Cup pest dataset and further propose a lightweight and effective agricultural pest detection method for small target pests, named Yolo-Pest, for the pest detection task in agriculture. Specifically, we tackle the problem of feature extraction in small sample learning with the proposed CAC3 module, which is built in a stacking residual structure based on the standard BottleNeck module. By applying a ConvNext module based on the vision transformer (ViT), the proposed method achieves effective feature extraction while keeping a lightweight network. Comparative experiments prove the effectiveness of our approach. Our proposal achieves 91.9% mAP0.5 on the Teddy Cup pest dataset, which outperforms the Yolov5s model by nearly 8% in mAP0.5. It also achieves great performance on public datasets, such as IP102, with a great reduction in the number of parameters.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Animales , Agricultura , Suministros de Energía Eléctrica , Insectos
14.
Food Chem ; 401: 134072, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108381

RESUMEN

Plant growth regulator N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) is widely used in fruit production. However, the mechanism in which CPPU affects melon fruit quality, especially aroma compound, remains unclear. Here, gas chromatography-mass spectrometry was performed to detect the sugar, citric acid, and aroma content in CPPU-treated and pollinated melon fruit. Results showed that the application of CPPU decreased the sugar and aroma content in melon fruit. The relative content of several important esters, including isobutyl acetate, ethyl acetate, 2-methylbutyl acetate, methyl acetate, benzyl acetate, and phenethyl acetate, in CPPU-treated fruits was significantly lower than that in honeybee-pollinated fruits. The content of many amino acids (isoleucine, leucine, valine, methionine, and l-phenylalanine), which could be metabolized into aroma compounds, in CPPU-treated fruits was significantly higher than that in honeybee-pollinated fruits. In conclusion, CPPU application interferes with amino-acid metabolism and affects the production of aromatic esters in melon fruit.


Asunto(s)
Cucurbitaceae , Compuestos Orgánicos Volátiles , Abejas , Animales , Frutas/metabolismo , Cucurbitaceae/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Azúcares/metabolismo , Isoleucina , Leucina/metabolismo , Metionina/metabolismo , Ácido Cítrico/metabolismo , Valina/metabolismo , Fenilalanina/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Odorantes
15.
Bioresour Bioprocess ; 10(1): 38, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38647946

RESUMEN

ß-Elemene, an active ingredient found in medicinal plants like turmeric and zedoary, is a sesquiterpene compound with antitumor activity against various cancers. However, its current mode of production through plant extraction suffers from low efficiency and limited natural resources. Recently, there has been an increased interest in establishing microbial cell factories to produce germacrene A, which can be converted to ß-elemene by a one-step reaction in vitro. In this study, we constructed an engineered Pichia pastoris cell factory for producing germacrene A. We rerouted the fluxes towards germacrene A biosynthesis through the optimization of the linker sequences between germacrene A synthase (GAS) and farnesyl pyrophosphate synthase (ERG20), overexpression of important pathway genes (i.e., IDI1, tHMG1, and ACS), and multi-copy integration of related expression cassettes. In combination with medium optimization and bioprocess engineering, the final titer of germacrene A in a 1 L fermenter reached 1.9 g/L through fed-batch fermentation. This represents the first report on the production of germacrene A in P. pastoris and demonstrates its advantage in producing terpenoids and other value-added natural products.

16.
Plant Physiol Biochem ; 192: 320-330, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302334

RESUMEN

Melon fruits are popular because of sweet taste and pleasant aroma. Grafting has been extensively used for melons to alleviate abiotic stresses and control soil borne diseases. However, use of grafting for vegetable fruit quality improvement is less studies. In modern age fruit quality particularly sensory quality characteristics have key importance from consumer eye lens. We performed liquid chromatography-mass spectrometry and metabonomic analysis to examine sensory fruit quality of melon grafted onto ten different pumpkin rootstocks. Bases on the result of our study, 478 metabolites were detected and 184 metabolites consisting of lipids, amino acids and organic oxygen compounds were differentially expressed in grafted melon fruits. The results from metabolomic, physiochemical and sensory analysis explain the differences in melon fruit flavor from two contrasting rootstocks. In conclusion the fruits from Tianzhen No. 1 rootstock exhibited better organoleptic characteristics and higher soluble sugars content [glucose (19.87 mg/g), fructose (19.68 mg/g) and sucrose (169.45 mg/g)] compared with other rootstocks used in this study. Moreover, the contents of bitterness causing amino acids such as L-arginine, L-asparagine, Histidinyl-histidine and Acetyl-DL-valine were found lower in Tianzhen No. 1-grafted melon fruits compared with Sizhuang No. 12-grafted melon fruits. These fruit quality characteristics made Tianzhen No. 1 rootstock suitable for commercial cultivation of Yuniang melon.

17.
Front Immunol ; 13: 1005426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203584

RESUMEN

Mesenchymal stem cell (MSC) is a potential therapeutic material that has self-renewal, multilineage differentiation, and immunomodulation properties. However, the biological function of MSCs may decline due to the influence of donor differences and the in vitro expansion environment, which hinders the advancement of MSC-based clinical therapy. Here, we investigated a method for improving the immunomodulatory function of MSCs with the help of small-molecule compounds, A-83-01, CHIR99021, and Y27632 (ACY). The results showed that small-molecule induced MSCs (SM-MSCs) could enhance their immunosuppressive effects on T cells and macrophages. In vivo studies showed that, in contrast to control MSCs (Ctrl-MSCs), SM-MSCs could inhibit the inflammatory response in mouse models of delayed hypersensitivity and acute peritonitis more effectively. In addition, SM-MSCs showed the stronger ability to inhibit the infiltration of pro-inflammatory T cells and macrophages. Thus, small-molecule compounds ACY could better promote the immunomodulatory effect of MSCs, indicating it could be a potential improving method in MSC culture.


Asunto(s)
Inmunomodulación , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Inmunomodulación/fisiología , Macrófagos , Ratones , Linfocitos T
18.
Front Bioeng Biotechnol ; 10: 819148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360405

RESUMEN

Mesenchymal stem cells (MSCs) have a variety of unique properties, such as stem cell multipotency and immune regulation, making them attractive for use in cell therapy. Before infusion therapy, MSCs are required to undergo tissue separation, purification, and expansion in vitro for a certain duration. During the process of in vitro expansion of MSCs, the influence of culture time and environment can lead to cell senescence, increased heterogeneity, and function attenuation, which limits their clinical applications. We used a cocktail of three small-molecule compounds, ACY (A-83-01, CHIR99021, and Y-27632), to increase the proliferation activity of MSCs in vitro and reduce cell senescence. ACY inhibited the increase in heterogeneity of MSCs and conserved their differentiation potential. Additionally, ACY maintained the phenotype of MSCs and upregulated the expression of immunomodulatory factors. These results suggest that ACY can effectively improve the quantity and quality of MSCs.

19.
J Exp Bot ; 73(8): 2275-2289, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35139196

RESUMEN

The flux, distribution, and storage of soluble sugars regulate crop yield in terms of starch, oil, protein, and total carbohydrates, and affect the quality of many horticultural products. Sugar transporters contribute to phloem loading and unloading. The mechanisms of phloem loading have been studied in detail, but the complex and diverse mechanisms of phloem unloading and sugar storage in sink organs are less explored. Unloading and subsequent transport mechanisms for carbohydrates vary in different sink organs. Analyzing the transport and storage mechanisms of carbohydrates in important storage organs, such as cereal seeds, fruits, or stems of sugarcane, will provide information for genetic improvements to increase crop yield and fruit quality. This review discusses current research progress on sugar transporters involved in carbohydrate unloading and storage in sink organs. The roles of sugar transporters in crop yield and the accumulation of sugars are also discussed to highlight their contribution to efficient breeding.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Transporte Biológico/fisiología , Carbohidratos , Frutas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Floema/metabolismo , Fitomejoramiento , Sacarosa/metabolismo , Azúcares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA