Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(7): 1069-1074, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353647

RESUMEN

Hypoxia is a hallmark of inflammatory conditions (e.g., inflammatory bowel disease [IBD]), and adaptive responses have consequently evolved to protect against hypoxia-associated tissue injury. Because augmenting hypoxia-induced protective responses is a promising therapeutic approach for IBD, a more complete understanding of these pathways is needed. Recent work has demonstrated that the histone demethylase UTX is oxygen-sensitive, but its role in IBD is unclear. In this study, we show that hypoxia-induced deactivation of UTX downregulates T cell responses in mucosal inflammation. Hypoxia results in decreased T cell proinflammatory cytokine production and increased immunosuppressive regulatory T cells, and these findings are recapitulated by UTX deficiency. Hypoxia leads to T cell accumulation of H3K27me3 histone modifications, suggesting that hypoxia impairs UTX's histone demethylase activity to dampen T cell colitogenic activity. Finally, T cell-specific UTX deletion ameliorates colonic inflammation in an IBD mouse model, implicating UTX's oxygen-sensitive demethylase activity in counteracting hypoxic inflammation.


Asunto(s)
Linfocitos T CD4-Positivos , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Linfocitos T CD4-Positivos/metabolismo , Histona Demetilasas/metabolismo , Oxígeno , Hipoxia , Inflamación
2.
bioRxiv ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37546969

RESUMEN

Hypoxia is a feature of inflammatory conditions [e.g., inflammatory bowel disease (IBD)] and can exacerbate tissue damage in these diseases. To counteract hypoxia's deleterious effects, adaptive responses have evolved which protect against hypoxia-associated tissue injury. To date, much attention has focused on hypoxia-activated HIF (hypoxia-inducible factor) transcription factors in these responses. However, recent work has identified epigenetic regulators that are also oxygen-sensitive, but their role in adaptation to hypoxic inflammation is currently unclear. Here, we show that the oxygen-sensing epigenetic regulator UTX is a critical modulator of colitis severity. Unlike HIF transcription factors that act on gut epithelial cells, UTX functions in colitis through its effects on immune cells. Hypoxia results in decreased CD4 + T cell IFN-γ production and increased CD4 + regulatory T cells, and these findings are recapitulated by T cell-specific UTX deficiency. Hypoxia impairs the histone demethylase activity of UTX, and loss of UTX function leads to accumulation of repressive H3K27me3 epigenetic marks at IL12/STAT4 pathway genes ( Il12rb2, Tbx21, and Ifng ). In a colitis mouse model, T cell-specific UTX deletion ameliorates colonic inflammation, protects against weight loss, and increases survival. Together these findings implicate UTX's oxygen-sensitive histone demethylase activity in mediating protective, hypoxia-induced pathways in colitis.

3.
Nat Immunol ; 24(5): 780-791, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928413

RESUMEN

Viral infection outcomes are sex biased, with males generally more susceptible than females. Paradoxically, the numbers of antiviral natural killer (NK) cells are increased in males. We demonstrate that while numbers of NK cells are increased in male mice, they display decreased effector function compared to females in mice and humans. These differences were not solely dependent on gonadal hormones, because they persisted in gonadectomized mice. Kdm6a (which encodes the protein UTX), an epigenetic regulator that escapes X inactivation, was lower in male NK cells, while NK cell-intrinsic UTX deficiency in female mice increased NK cell numbers and reduced effector responses. Furthermore, mice with NK cell-intrinsic UTX deficiency showed increased lethality to mouse cytomegalovirus. Integrative multi-omics analysis revealed a critical role for UTX in regulating chromatin accessibility and gene expression critical for NK cell homeostasis and effector function. Collectively, these data implicate UTX as a critical molecular determinant of sex differences in NK cells.


Asunto(s)
Genes Ligados a X , Caracteres Sexuales , Masculino , Humanos , Femenino , Ratones , Animales , Epigénesis Genética , Células Asesinas Naturales , Histona Demetilasas/genética
4.
J Immunol ; 209(4): 696-709, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35817515

RESUMEN

Immune checkpoint inhibitor (ICI) immunotherapy leverages the body's own immune system to attack cancer cells but leads to unwanted autoimmune side effects in up to 60% of patients. Such immune-related adverse events (IrAEs) may lead to treatment interruption, permanent organ dysfunction, hospitalization, and premature death. Thyroiditis is one of the most common IrAEs, but the cause of thyroid IrAEs remains unknown. In this study, we use a new, physiologically relevant mouse model of ICI-associated autoimmunity to identify a key role for type 3 immune cells in the development of thyroid IrAEs. Multiple lineages of IL-17A-producing T cells expand in thyroid tissue with ICI treatment. Intrathyroidal IL-17A-producing innate-like γδT17 cells were increased in tumor-free mice, whereas adaptive Th17 cells were also prominent in tumor-bearing mice, following ICI treatment. Furthermore, Ab-based inhibition of IL-17A, a clinically available therapy, significantly reduced thyroid IrAE development in ICI-treated mice with and without tumor challenge. Finally, combination of IL-17A neutralization with ICI treatment in multiple tumor models did not reduce ICI antitumor efficacy. These studies suggest that targeting Th17 and γδT17 cell function via the IL-17A axis may reduce IrAEs without impairing ICI antitumor efficacy and may be a generalizable strategy to address type 3 immune-mediated IrAEs.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias , Animales , Inmunoterapia , Interleucina-17 , Ratones , Neoplasias/patología , Glándula Tiroides/patología
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35058362

RESUMEN

Immune cells infiltrate the peripheral nervous system (PNS) after injury and with autoimmunity, but their net effect is divergent. After injury, immune cells are reparative, while in inflammatory neuropathies (e.g., Guillain Barré Syndrome and chronic inflammatory demyelinating polyneuropathy), immune cells are proinflammatory and promote autoimmune demyelination. An understanding of immune cell phenotypes that distinguish these conditions may, therefore, reveal new therapeutic targets for switching immune cells from an inflammatory role to a reparative state. In an autoimmune regulator (Aire)-deficient mouse model of inflammatory neuropathy, we used single-cell RNA sequencing of sciatic nerves to discover a transcriptionally heterogeneous cellular landscape, including multiple myeloid, innate lymphoid, and lymphoid cell types. Analysis of cell-cell ligand-receptor interactions uncovered a macrophage-mediated tumor necrosis factor-α (TNF-α) signaling axis that is induced by interferon-γ and required for initiation of autoimmune demyelination. Developmental trajectory visualization suggested that TNF-α signaling is associated with metabolic reprogramming of macrophages and polarization of macrophages from a reparative state in injury to a pathogenic, inflammatory state in autoimmunity. Autocrine TNF-α signaling induced macrophage expression of multiple genes (Clec4e, Marcksl1, Cxcl1, and Cxcl10) important in immune cell activation and recruitment. Genetic and antibody-based blockade of TNF-α/TNF-α signaling ameliorated clinical neuropathy, peripheral nerve infiltration, and demyelination, which provides preclinical evidence that the TNF-α axis may be effectively targeted to resolve inflammatory neuropathies.


Asunto(s)
Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Poliendocrinopatías Autoinmunes/complicaciones , Factor de Necrosis Tumoral alfa/metabolismo , Traslado Adoptivo , Animales , Anticuerpos Monoclonales/farmacología , Comunicación Autocrina , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/patología , Comunicación Paracrina , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/patología , Poliendocrinopatías Autoinmunes/genética , Receptores del Factor de Necrosis Tumoral/deficiencia , Nervio Ciático/inmunología , Nervio Ciático/metabolismo , Nervio Ciático/patología , Transducción de Señal , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
6.
PLoS Pathog ; 16(7): e1008622, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32634175

RESUMEN

Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from phagosomes and induces a robust adaptive immune response in mice, while mutants unable to escape phagosomes fail to induce a robust adaptive immune response and suppress the immunity to wildtype bacteria when co-administered. The capacity to suppress immunity can be reversed by blocking IL-10. In this study, we sought to understand the host receptors that lead to secretion of IL-10 in response to phagosome-confined L. monocytogenes (Δhly), with the ultimate goal of generating strains that fail to induce IL-10. We conducted a transposon screen to identify Δhly L. monocytogenes mutants that induced significantly more or less IL-10 secretion in bone marrow-derived macrophages (BMMs). A transposon insertion in lgt, which encodes phosphatidylglycerol-prolipoprotein diacylglyceryl transferase and is essential for the formation of lipoproteins, induced significantly reduced IL-10 secretion. Mutants with transposon insertions in pgdA and oatA, which encode peptidoglycan N-acetylglucosamine deacetylase and O-acetyltransferase, are sensitive to lysozyme and induced enhanced IL-10 secretion. A ΔhlyΔpgdAΔoatA strain was killed in BMMs and induced enhanced IL-10 secretion that was dependent on Unc93b1, a trafficking molecule required for signaling of nucleic acid-sensing TLRs. These data revealed that nucleic acids released by bacteriolysis triggered endosomal TLR-mediated IL-10 secretion. Secretion of IL-10 in response to infection with the parental strain was mostly TLR2-dependent, while IL-10 secretion in response to lysozyme-sensitive strains was dependent on TLR2 and Unc93b1. In mice, the IL-10 response to vacuole-confined L. monocytogenes was also dependent on TLR2 and Unc93b1. Co-administration of Δhly and ΔactA resulted in suppressed immunity in WT mice, but not in mice with mutations in Unc93b1. These data revealed that secretion of IL-10 in response to L. monocytogenes infection in vitro is mostly TLR2-dependent and immune suppression by phagosome-confined bacteria in vivo is mostly dependent on endosomal TLRs.


Asunto(s)
Tolerancia Inmunológica/inmunología , Interleucina-10/metabolismo , Listeriosis/inmunología , Receptores Toll-Like/inmunología , Animales , Endosomas/inmunología , Endosomas/metabolismo , Interleucina-10/inmunología , Listeria monocytogenes/inmunología , Listeriosis/metabolismo , Ratones , Ratones Endogámicos C57BL , Fagosomas/inmunología , Fagosomas/metabolismo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Receptores Toll-Like/metabolismo
7.
JCI Insight ; 5(3)2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32051341

RESUMEN

Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease of the peripheral nerves that presents with either chronic progression or relapsing disease. Recent studies in samples from patients with CIDP and mouse models have delineated how defects in central (thymic) and peripheral (extrathymic) immune tolerance mechanisms can cause PNS autoimmunity. Notably, nerve parenchymal cells actively contribute to local autoimmunity and also control disease outcome. Here, we outline how emerging technologies increasingly enable an integrated view of how immune cells and PNS parenchymal cells communicate in CIDP. We also relate the known heterogeneity of clinical presentation with specific underlying mechanisms. For example, a severe subtype of CIDP with tremor is associated with pathogenic IgG4 autoantibodies against nodal and paranodal proteins. An improved understanding of pathogenic mechanisms in CIDP will form the basis for more effective mechanism-based therapies.


Asunto(s)
Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/inmunología , Animales , Autoanticuerpos/inmunología , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina G/inmunología , Ratones , Nervios Periféricos/patología
8.
Cell Microbiol ; 20(9): e12854, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29726107

RESUMEN

Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin-based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin-based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time-lapse microscopy using green fluorescent protein-LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin-based motility moved away from LC3-positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin-based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol.


Asunto(s)
Actinas/metabolismo , Autofagia , Citosol/microbiología , Interacciones Huésped-Patógeno , Listeria monocytogenes/inmunología , Macrófagos/inmunología , Movimiento (Física) , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Análisis Mutacional de ADN , Evasión Inmune , Macrófagos/microbiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Multimerización de Proteína , Imagen de Lapso de Tiempo
9.
Proc Natl Acad Sci U S A ; 115(2): E210-E217, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279409

RESUMEN

Xenophagy is a selective macroautophagic process that protects the host cytosol by entrapping and delivering microbes to a degradative compartment. Both noncanonical autophagic pathways and xenophagy are activated by microbes during infection, but the relative importance and function of these distinct processes are not clear. In this study, we used bacterial and host mutants to dissect the contribution of autophagic processes responsible for bacterial growth restriction of Listeria monocytogenesL. monocytogenes is a facultative intracellular pathogen that escapes from phagosomes, grows in the host cytosol, and avoids autophagy by expressing three determinants of pathogenesis: two secreted phospholipases C (PLCs; PlcA and PlcB) and a surface protein (ActA). We found that shortly after phagocytosis, wild-type (WT) L. monocytogenes escaped from a noncanonical autophagic process that targets damaged vacuoles. During this process, the autophagy marker LC3 localized to single-membrane phagosomes independently of the ULK complex, which is required for initiation of macroautophagy. However, growth restriction of bacteria lacking PlcA, PlcB, and ActA required FIP200 and TBK1, both involved in the engulfment of microbes by xenophagy. Time-lapse video microscopy revealed that deposition of LC3 on L. monocytogenes-containing vacuoles via noncanonical autophagy had no apparent role in restricting bacterial growth and that, upon access to the host cytosol, WT L. monocytogenes utilized PLCs and ActA to avoid subsequent xenophagy. In conclusion, although noncanonical autophagy targets phagosomes, xenophagy was required to restrict the growth of L. monocytogenes, an intracellular pathogen that damages the entry vacuole.


Asunto(s)
Autofagia , Listeria monocytogenes/fisiología , Macrófagos/microbiología , Fagocitosis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Citosol/metabolismo , Citosol/microbiología , Interacciones Huésped-Patógeno , Listeria monocytogenes/genética , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Mutación , Fagosomas/metabolismo , Fagosomas/microbiología , Imagen de Lapso de Tiempo/métodos , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...