Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Nat Commun ; 15(1): 5040, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38866786

Direct chemical vapor deposition (CVD) growth of graphene on dielectric/insulating materials is a promising strategy for subsequent transfer-free applications of graphene. However, graphene growth on noncatalytic substrates is faced with thorny issues, especially the limited growth rate, which severely hinders mass production and practical applications. Herein, graphene glass fiber fabric (GGFF) is developed by graphene CVD growth on glass fiber fabric. Dichloromethane is applied as a carbon precursor to accelerate graphene growth, which has a low decomposition energy barrier, and more importantly, the produced high-electronegativity Cl radical can enhance adsorption of active carbon species by Cl-CH2 coadsorption and facilitate H detachment from graphene edges. Consequently, the growth rate is increased by ~3 orders of magnitude and carbon utilization by ~960-fold, compared with conventional methane precursor. The advantageous hierarchical conductive configuration of lightweight, flexible GGFF makes it an ultrasensitive pressure sensor for human motion and physiological monitoring, such as pulse and vocal signals.

2.
Adv Mater ; 36(24): e2313752, 2024 Jun.
Article En | MEDLINE | ID: mdl-38576272

Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.

3.
Food Chem ; 445: 138802, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38401314

Bisphenols (BPs) can migrate from packaging materials into foods, resulting in potentially harmful residues. For example, accumulation of BPs is associated with endocrine disorders. Owing to matrix effects, development of an effective and eco-friendly sample pretreatment would be helpful for BPs detection in beverages packed in plastic containers. In this work, an extraction bar, composed of hollow fiber (HF) functionalized with covalent organic frameworks (COF@Tp-NDA) and 1-ocanol, was prepared for extraction of five BPs simultaneously. The synergistic effect of COF@Tp-NDA and 1-octanol improved the extraction efficiency of BPs from milk-based beverage, juice, and tea beverage. Under optimal conditions, limits of detection ranged from 0.10 to 2.00 ng mL-1 (R2 ≥ 0.9974) and recoveries ranged from 70.1 % to 106.8 %. This method has the potential to enrich BPs, supporting their accurate determination in complex beverages.


Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Beverages/analysis , 1-Octanol , Food , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid
4.
J Environ Manage ; 354: 120336, 2024 Mar.
Article En | MEDLINE | ID: mdl-38367502

In this work, a novel and efficient Fe-Ni LDH@ZIF-67 catalyst modified carbon cloth (CC) cathode was developed for tetracycline (TC) degradation in heterogeneous electro-Fenton (Hetero-EF) process. Compared to Fe-Ni LDH/CC (75.7%), TC degradation rate of Fe-Ni LDH@ZIF-67/CC cathode increased to 95.6% within 60 min. The synergistic effect of hetero-EF and anodic oxidation process accelerated electron transfer, the maximum H2O2 production of Fe-Ni LDH@ZIF-67/CC electrode reached 264 mg/L, improving utilization efficiency of H2O2. The cathode possessing a satisfied TC degradation performance over a wide pH (3-9). Free radical capture experiment revealed the collaboration of ·O2-, ·OH, and 1O2 play a significant role in TC degradation. The 5 cycles experiment and metal ion leaching experiment showed that the proposed Fe-Ni LDH@ZIF-67/CC has good recyclability and stability. In addition, the proposed Fe-Ni LDH@ZIF-67/CC cathode achieved satisfying performance in real water (tap water: 97.3%, lake water: 97.7%), demonstrating the possibility for practical application. TC degradation pathways were proposed by theory analysis and experimental results. The toxicity of TC intermediates was reduced by Hetero-EF degradation according to Toxicity Estimation Software Tool and Escherichia coli growth inhibition experiments. This work provides a novel modified cathode to improve removal efficiency of antibiotics in wastewater.


Carbon , Water Pollutants, Chemical , Carbon/chemistry , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/chemistry , Tetracycline , Oxidation-Reduction , Electrodes , Water
5.
World J Pediatr ; 20(2): 173-184, 2024 Feb.
Article En | MEDLINE | ID: mdl-37737505

BACKGROUND: Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Children with TOF would be confronted with neurological impairment across their lifetime. Our study aimed to identify the risk factors for cerebral morphology changes and cognition in postoperative preschool-aged children with TOF. METHODS: We used mass spectrometry (MS) technology to assess the levels of serum metabolites, Wechsler preschool and primary scale of intelligence-Fourth edition (WPPSI-IV) index scores to evaluate neurodevelopmental levels and multimodal magnetic resonance imaging (MRI) to detect cortical morphological changes. RESULTS: Multiple linear regression showed that preoperative levels of serum cortisone were positively correlated with the gyrification index of the left inferior parietal gyrus in children with TOF and negatively related to their lower visual spaces index and nonverbal index. Meanwhile, preoperative SpO2 was negatively correlated with levels of serum cortisone after adjusting for all covariates. Furthermore, after intervening levels of cortisone in chronic hypoxic model mice, total brain volumes were reduced at both postnatal (P) 11.5 and P30 days. CONCLUSIONS: Our results suggest that preoperative serum cortisone levels could be used as a biomarker of neurodevelopmental impairment in children with TOF. Our study findings emphasized that preoperative levels of cortisone could influence cerebral development and cognition abilities in children with TOF.


Cortisone , Heart Defects, Congenital , Tetralogy of Fallot , Child , Humans , Child, Preschool , Animals , Mice , Tetralogy of Fallot/surgery , Heart Defects, Congenital/surgery , Risk Factors , Cognition
6.
Heliyon ; 9(4): e15073, 2023 Apr.
Article En | MEDLINE | ID: mdl-37151712

A multi-wavelength bandstop filter is proposed and numerically demonstrated using the sum-frequency generation (SFG) process in a waveguide of periodically poled lithium niobate (PPLN). This proposed device achieves channels number reconfigurable, central filtering wavelength of each filtering channel independently tunable and extinction ratios (ERs) equalized via all-optical methods.

7.
ACS Omega ; 8(1): 934-945, 2023 Jan 10.
Article En | MEDLINE | ID: mdl-36643527

Rate of penetration (ROP) is an essential factor in drilling optimization and reducing the drilling cycle. Most of the traditional ROP prediction methods are based on building physical model and single intelligent algorithms, and the efficiency and accuracy of these prediction methods are very low. With the development of artificial intelligence, high-performance algorithms make reliable prediction possible from the data perspective. To improve ROP prediction efficiency and accuracy, this paper presents a method based on particle swarm algorithm for optimization of long short-term memory (LSTM) neural networks. In this paper, we consider the Tuha Shengbei block oilfield as an example. First, the Pearson correlation coefficient is used to measure the correlation between the characteristics and eight parameters are screened out, namely, the depth of the well, gamma, formation density, pore pressure, well diameter, drilling time, displacement, and drilling fluid density. Second, the PSO algorithm is employed to optimize the super-parameters in the construction of the LSTM model to the predict ROP. Third, we assessed model performance using the determination coefficient (R 2), root mean square error (RMSE), and mean absolute percentage error (MAPE). The evaluation results show that the optimized LSTM model achieves an R 2 of 0.978 and RMSE and MAPE are 0.287 and 12.862, respectively, hence overperforming the existing methods. The average accuracy of the optimized LSTM model is also improved by 44.2%, indicating that the prediction accuracy of the optimized model is higher. This proposed method can help to drill engineers and decision makers to better plan the drilling operation scheme and reduce the drilling cycle.

8.
Adv Mater ; 35(18): e2209897, 2023 May.
Article En | MEDLINE | ID: mdl-36720106

Solar heating and radiative cooling techniques have been proposed for passive space thermal management to reduce the global energy burden. However, the currently used single-function envelope/coating materials can only achieve static temperature regulation, presenting limited energy savings and poor adaption to dynamic environments. In this study, a sandwich-structured fabric, composed of vertical graphene, graphene glass fiber fabric, and polyacrylonitrile nanofibers is developed, with heating and cooling functions integrated through multiband, synergistic, (solar spectrum and mid-infrared ranges) and asymmetric optical modulations on two sides of the fabric. The dual-function fabric demonstrates high adaption to the dynamic environment and superior performance in a zero-energy-input temperature regulation. Furthermore, it demonstrates ≈15.5 and ≈31.1 MJ m-2 y-1 higher annual energy savings compared to those of their cooling-only and heating-only counterparts, corresponding to ≈173.7 MT reduction in the global CO2 emission. The fabric exhibits high scalability for batch manufacturing with commercially abundant raw materials and facile technologies, providing a favorable guarantee of its mass production and use.

9.
Pediatr Res ; 93(5): 1321-1327, 2023 04.
Article En | MEDLINE | ID: mdl-35194163

BACKGROUND: Neurodevelopmental abnormalities are prevalent in children with tetralogy of Fallot. Our aim was to investigate the structural brain alterations of preschool-aged children with tetralogy of Fallot and its correlation with neurodevelopmental outcome. METHODS: T1-weighted structural images were obtained from 25 children with tetralogy of Fallot who had undergone cardiopulmonary bypass surgery and from 24 normal controls. Cortical morphological indices including gray matter volume, cortical thickness, sulcal depth, gyrification, and cortical surface complexity were compared between the two groups. Neurodevelopmental assessments of the children with tetralogy of Fallot were performed with the Wechsler Preschool and Primary Scale of Intelligence. RESULTS: Cortical morphological differences between groups were distributed throughout the right caudal middle frontal gyrus, right fusiform gyrus, right lateral occipital gyrus, right precuneus, and left inferior parietal lobule. Among children with tetralogy of Fallot, altered cortical structures were correlated with the visual spatial index, working memory index, and perioperative variables. CONCLUSION: Our results suggested that abnormal cortical structure in preschool-aged children with tetralogy of Fallot may be the persistent consequence of delayed cortical development in fetuses and cortical morphology can be used as an early potential biomarker to capture regional brain abnormalities that are relevant to neurodevelopmental outcomes. IMPACT: Altered cortical structures in preschool-aged children with ToF were correlated with both neurodevelopmental outcomes and clinical risk factors. Cortical morphology can be used as an effective tool to evaluate neuroanatomical changes and detect underlying neural mechanisms in ToF patients. Abnormal cortical structure may be the continuous consequence of delayed fetal brain development in children with ToF.


Tetralogy of Fallot , Humans , Child , Child, Preschool , Tetralogy of Fallot/diagnostic imaging , Tetralogy of Fallot/surgery , Risk Factors , Cardiopulmonary Bypass , Brain/diagnostic imaging , Fetus , Magnetic Resonance Imaging
10.
Transl Androl Urol ; 12(12): 1785-1802, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-38196694

Background: The testicular sperm instead of ejaculated sperm for intracytoplasmic sperm injection (ICSI) in infertile men with high sperm DNA fragmentation (SDF) is a controversial topic. This updated systematic review and meta-analysis aims to evaluate whether couples with high level of SDF will benefit more from intracytoplasmic sperm injection with testicular sperm (Testi-ICSI) as compared to intracytoplasmic sperm injection with ejaculated sperm (Ejac-ICSI). Methods: A systematic search was conducted according to PRISMA guidelines, using PubMed, Embase, Web of Science and the Cochrane Central Register of Controlled Trials (CENTRAL), encompassing studies from the earliest record until May 2022. We included studies analyzing comparative pregnancy outcomes of testicular versus ejaculated sperm for ICSI in infertile men with high DNA fragmentation. The risks of bias and certainty of evidence were assessed using the Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework, respectively. Results: Eleven studies were included. Meta-analysis showed that SDF levels revealed a significant difference association [odds ratio (OR) =-25.81; 95% confidence interval (CI): -34.82, -16.81; I2=94%; P<0.00001] between testicular and ejaculated sperm. Compared with Ejac-ICSI, a non-significant tendency was observed for fertilization rates (FRs) in the Testi-ICSI group (OR =0.87; 95% CI: 0.67, 1.12; I2=81%; P=0.28). However, there was significant difference pointing to better outcomes for Testi-ICSI in clinical pregnancy rates (CPRs) (OR =2.36; 95% CI: 1.71, 3.24; I2=0%; P<0.00001), live birth rates (LBRs) (OR =3.10; 95% CI: 2.13, 4.51; I2=4%; P<0.00001) and miscarriage rates (MRs) (OR =0.28; 95% CI: 0.13, 0.60; I2=0%; P=0.001). Conclusions: Results of this updated meta-analysis reveal that SDF rates are lower in testicular sperm than in ejaculated sperm and that Testi-ICSI is correlated with better clinical outcomes, including higher CPRs, higher LBRs, and lower MRs in infertile males with high SDF levels. Nevertheless, with the overall low to moderate quality of the studies, further well-designed controlled studies are required.

11.
Sheng Li Xue Bao ; 74(5): 726-736, 2022 Oct 25.
Article Zh | MEDLINE | ID: mdl-36319096

The central circadian clock and feeding rhythm coordinately reset peripheral circadian clocks. Emerging evidence suggests that feeding rhythm resets peripheral circadian clocks in a tissue-specific manner. This study aimed to determine whether and how feeding rhythm regulates circadian rhythms of the circadian clock and metabolic genes in brown adipose tissue (BAT). We applied different regimens of time-restricted feeding (TRF) in wildtype and Per1/2 deficient C57BL/6 mice, and quantified the effects of sex, treatment duration, constant light, and circadian clock on circadian rhythms of the BAT circadian clock and metabolic genes by RT-qPCR; Representative circadian clock genes are Bmal1, Nr1d1, Dbp, and Per2, and representative metabolic genes are uncoupling protein 1 (Ucp1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3) that controls the flux through glycolysis, pyruvate dehydrogenase kinase isozyme 4 (Pdk4) gating the tricarboxylic acid cycle, and carnitine palmitoyltransferase 1A (Cpt1a) that controls mitochondrial fatty acid oxidation. The results showed that, daytime-restricted feeding (DRF) moderately shifted the phase of the BAT circadian clock in female mice within 7 or 36 d, and resulted in the loss of circadian rhythm in Dbp and Per2 transcripts in males. DRF induced de novo oscillation of the Ucp1 transcript, and shifted the phase of representative metabolic genes, such as Pfkfb3, Pdk4, and Cpt1a, more than 7 h. Constant light is known to disrupt the synchrony of the central circadian clock. The results showed that constant light promoted phase entrainment of the circadian clock by DRF in BAT, but abolished the oscillation of the metabolic genes (except for Pdk4). Despite combined treatment with Per1/2 deficiency and constant darkness, DRF was sufficient to drive circadian rhythms of Bmal1 and Dbp, but not those of Nr1d1, Ucp1, Pfkfb3, and Cpt1a. Overall, the circadian clock of BAT has weak adaptation to altered feeding rhythms and sex differences. The central circadian clock antagonizes DRF in the entrainment of the BAT circadian clock, whereas DRF resets circadian rhythms of metabolic genes, such as Ucp1, Pfkfb3, and Cpt1a, in a circadian clock-dependent manner.


Circadian Clocks , Female , Male , Animals , Mice , Mice, Inbred C57BL , Adipose Tissue, Brown , ARNTL Transcription Factors , Circadian Rhythm
12.
J Am Chem Soc ; 144(34): 15562-15568, 2022 Aug 31.
Article En | MEDLINE | ID: mdl-35980604

Graphene has been widely used as a solar absorber for its broad-band absorption. However, targeting a higher photothermal efficiency, the intrinsic infrared radiation loss of graphene requires to be further reduced. Herein, band structure engineering is performed to modulate graphene infrared radiation. Nitrogen-doped vertical graphene is grown on quartz foam (NVGQF) by the plasma-enhanced chemical vapor deposition method. Under the premise of keeping high solar absorption (250-2500 nm), graphitic nitrogen doping effectively modulates the infrared emissivity (2.5-25 µm) of NVGQF from 0.96 to 0.68, reducing the radiation loss by ∼31%. Based on the excellent photothermal properties of NVGQF, a temperature-gradient-driven crude oil collecting raft is designed, where the crude oil flows along the collecting path driven by the viscosity gradient without any external electric energy input. Compared with a nondoped vertical graphene quartz foam raft, the NVGQF raft with a superior photothermal efficiency shows a significantly enhanced crude oil collecting efficiency by three times. The advances in this work suggest broad radiation-managed application platforms for graphene materials, such as seawater desalination and personal or building thermal management.

13.
Pediatr Neurol ; 133: 15-20, 2022 08.
Article En | MEDLINE | ID: mdl-35749819

BACKGROUND: White matter injury (WMI) and impaired neurodevelopment are common in children with congenital heart disease. However, the effect of WMI on neurodevelopmental outcomes is still rarely reported. In this study, we aimed to investigate microstructural changes in white matter (WM) and its relationship with neurodevelopmental outcomes and further explore the underlying neurophysiological mechanisms of neurocognitive impairments in the tetralogy of Fallot (ToF). METHOD: Diffusion tensor imaging (DTI) data were acquired in preschool-aged children with ToF (n = 29) and normal controls (NC, n = 19), and neurodevelopmental assessments were performed with the Wechsler Preschool and Primary Scale of Intelligence in ToF. The differences in DTI metrics including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were evaluated between ToF and NC. Correlations between WM microstructural changes and neurodevelopmental outcomes were further analyzed. RESULTS: Significant WM differences were found in the uncinate fasciculus, cingulum hippocampus, superior longitudinal fasciculus, and corticospinal tract between children with ToF and NC. Impaired WM integrity was correlated with the verbal comprehension index and working memory index in ToF. CONCLUSIONS: This study demonstrated WM microstructure injury, and this injury is related to worse language and working memory performance in preschool-aged children with ToF. These findings suggested that DTI metrics may be a potential biomarker of neurocognitive impairments in ToF and can be used to predict future neurodevelopmental outcomes, which also provide new insights into the underlying neurophysiological mechanisms of neurocognitive impairments in ToF.


Tetralogy of Fallot , White Matter , Brain/diagnostic imaging , Child , Child, Preschool , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Tetralogy of Fallot/diagnostic imaging , White Matter/diagnostic imaging
14.
Bioelectrochemistry ; 147: 108174, 2022 Oct.
Article En | MEDLINE | ID: mdl-35749886

A novel sandwich electrochemiluminescence (ECL) aptasensor was developed for highly sensitive detection of kanamycin using luminol-functionalized aptamer as a signal probe. The aptasensor used polyethyleneimine (PAMAM), molybdenum disulfide, and multi-walled carbon nanotubes as the substrate, which provided enough binding sites for aptamer1 (the aptamer which modified NH2) coupling. We found that kanamycin could be detected using the aptamer1 containing the same base sequence as aptamer2 (the aptamer which modified SH) on the electrode self-assembly. In addition, PAMAM nanocomposites can be used to effectively improve the ECL intensity by loading a high volume of luminol molecules and silver nanoparticles. In the presence of kanamycin, the sandwiched aptasensor was formed between aptamer1 and the probe of aptamer2 connecting silver nanoparticles, luminol, and PAMAM, resulting in a proportional increase of ECL intensity. Since the significantly enhanced loading of luminol by PAMAM accelerated the electron transfer, the sensitive aptasensor exhibited a wide linear range of detection from 1 × 10-3 to 1 × 103 ng/mL and a low detection limit of 0.21 pg/mL (S/N) for kanamycin. The fabricated aptasensor was successfully applied in quantitative analysis of kanamycin in milk samples.


Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Gold/chemistry , Kanamycin , Limit of Detection , Luminescent Measurements/methods , Luminol/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry
15.
Small Methods ; 6(7): e2200499, 2022 Jul.
Article En | MEDLINE | ID: mdl-35610184

The lightweight, flexible, high-performance electrothermal material is in high demand in object thermal management. Graphene glass fiber fabric (GGFF) is characterized by excellent electrical conductivity, light weight, and high flexibility, showing superiorities as an electrothermal material. However, the traditional single-carbon-precursor chemical vapor deposition (CVD) graphene growth strategy commonly suffers from the severe thickness nonuniformity of the large-sized graphene film along the gas-flowing direction. Herein, a complementary CVD graphene growth strategy based on the simultaneous introduction of high- and low-decomposition-energy-barrier mixed carbon precursors is developed. In this way, the large-area uniform GGFF with a dramatically decreased nonuniformity coefficient is fabricated (0.260 in 40 cm × 4 cm). GGFF-based heater presents a widely tunable temperature range (20-170 °C) at low working voltage (<10 V) and uniform large-area heating temperature (171.4 ± 3.6 °C in 20 cm × 15 cm), which realizes remarkable anti/deicing performances under the low energy consumption (fast ice melting rate of 79 s mm-1 under a low energy consumption of 0.066 kWh mm-1 m-2 ). The large-area uniform GGFF possesses substantial advantages for applications in thermal management, and the complementary CVD fabrication strategy shows reliable scalability and universality, which can be extended to the synthesis of various materials.

16.
ACS Appl Mater Interfaces ; 14(17): 19889-19896, 2022 May 04.
Article En | MEDLINE | ID: mdl-35437993

Encapsulation for carbon-based electronic devices against oxidation can enhance their long-term working stability. Graphene glass fiber fabric (GGFF), as an advanced flexible electrothermal material, also struggles with graphene oxidation. The flexible, full-surface, conformal encapsulation for each fiber in the large-area fabric puts forward high requirements for encapsulating materials and techniques. Herein, the nanometer-thick h-BN layer was in situ grown on cambered surfaces of each fiber in GGFF with the chemical vapor deposition method. Stable heating duration (500 °C) of h-BN-encapsulated GGFF (h-BN/GGFF) was increased by 1 order of magnitude without compromising the electrothermal performances and flexibility. Theoretical simulations revealed that the enhanced oxidation resistance of h-BN/GGFF was attributed to the decreased interaction and adsorption life of oxygen. The proposed flexible, full-surface, conformal encapsulation technique targeting the fiber-shaped graphene electrothermal device is scalable and can be extended to the other carbon materials, even devices with intricate shapes, which will promote the development of flexible electronics.

17.
ACS Nano ; 16(2): 2577-2584, 2022 Feb 22.
Article En | MEDLINE | ID: mdl-35107258

Radiant heating, as a significant thermal management technique, is best known for its high thermal effect, media-free operation, good penetration, and compatibility for different heated shapes. To promote sustainable development in this area, developing advanced infrared radiation material is in high demand. In this work, a lightweight, flexible dual-emitter infrared electrothermal material, graphene glass fiber (GGF), is developed by chemical vapor deposition (CVD) method, with both graphene and glass fiber as the radiation elements. Large-area GGF fabric (GGFF) exhibits wavelength-independent high infrared emissivity (0.92) and thermal radiation efficiency (79.4%), as well as ultrafast electrothermal response (190.7 °C s-1 at 9.30 W cm-2) and uniform heating temperature. The superior radiant heating capability of GGFF to traditional alloy heating wires can achieve 33.3% energy saving. GGF can promote the development of efficient and energy-saving heat management technology.

18.
Ann Transl Med ; 9(14): 1156, 2021 Jul.
Article En | MEDLINE | ID: mdl-34430597

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common endocrine abnormalities in women of reproductive age. In this study, we set out to construct a molecular long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network according to the competitive endogenous RNA (ceRNA) theory and obtain insights into the related biological characteristics and pathways. METHODS: We downloaded two gene expression profile datasets of mural granulosa cells (MGCs) of women with PCOS and healthy women without PCOS (GSE84376 and GSE106724) from Gene Expression Omnibus (GEO) DataSets. Using GEO2R, we identified the mRNAs and non-coding RNAs with differential expression. The DIANA-microT-CDS algorithm was applied to predict the genes targeted by the differentially expressed miRNAs. The lncRNA-miRNA interactions were predicted using DIANA-LncBase v2. Then, we constructed the lncRNA-miRNA-mRNA network. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was employed to identify the functions and enriched pathways of the genes. Subsequently, STRING was used to construct the protein-protein interaction (PPI) network. cytoHubba in Cytoscape was used to rank the hub genes, and finally, PPI modules were screened with Cytoscape MCODE. RESULTS: There were 462 mRNAs, 2,464 lncRNAs, and 55 miRNAs which showed differential expression between the MGCs of patients with PCOS and those of healthy controls. Based on the PPI analysis, differentially expressed genes (DEGs) were significantly enriched in retinol metabolism, drug metabolism-cytochrome P450, malaria, the Hippo signaling pathway, and glycine, serine, and threonine metabolism. The ceRNA network contained 71 lncRNA nodes, 14 miRNA nodes, and 69 mRNA nodes, as well as 167 edges. We identified some novel genes and non-coding RNAs that might be involved in PCOS, including CD163, MRC1, VSIG4, CCL2, CCR2, SPP1, hsa-miR-3135b, hsa-miR-4649-3p, hsa-miR-1231, hsa-miR-3609, and hsa-miR-4433b-3p. CONCLUSIONS: This study identified a novel lncRNA-miRNA-mRNA network based on the ceRNA mechanism in PCOS. Some novel genes and non-coding RNAs that may be involved in the occurrence and development of PCOS were excavated, including CD163, MRC1, VSIG4, CCL2, CCR2, SPP1, hsa-miR-3135b, hsa-miR-4649-3p, hsa-miR-1231, hsa-miR-3609, and hsa-miR-4433b-3p. However, our findings need to be validated by in vivo and in vitro experiments.

19.
Neurosci Bull ; 37(4): 497-510, 2021 Apr.
Article En | MEDLINE | ID: mdl-33528793

Glioma-associated microglial cells, a key component of the tumor microenvironment, play an important role in glioma progression. In this study, the mouse glioma cell line GL261 and the mouse microglia cell line BV2 were chosen. First, circadian gene expression in glioma cells co-cultured with either M1 or M2 microglia was assessed and the exosomes of M2-polarized and unpolarized BV-2 microglia were extracted. Subsequently, we labeled the exosomes with PKH67 and treated GL261 cells with them to investigate the exosome distribution. GL261 cell phenotypes and related protein expression were used to explore the role of M2 microglial exosomes in gliomas. Then a specific miR-7239-3p inhibitor was added to verify miR-7239-3p functions. Finally, the mouse subcutaneous tumorigenic model was used to verify the tumorigenic effect of M2 microglial exosomes in vivo. Our results showed that in gliomas co-cultured with M2 microglia, the expression of the BMAL1 protein was decreased (P < 0.01), while the expression of the CLOCK protein was increased (P < 0.05); opposite results were obtained in gliomas co-cultured with M1 microglia. After treatment with M2 microglial exosomes, the apoptosis of GL261 cells decreased (P < 0.001), while the viability, proliferation, and migration of GL261 cells increased. Increased expression of N-cadherin and Vimentin, and decreased E-cadherin expression occurred upon treatment with M2 microglial exosomes. Addition of an miR-7239-3p inhibitor to M2 microglial exosomes reversed these results. In summary, we found that miR-7239-3p in the glioma microenvironment is recruited to glioma cells by exosomes and inhibits Bmal1 expression. M2 microglial exosomes promote the proliferation and migration of gliomas by regulating tumor-related protein expression and reducing apoptosis.


Exosomes , Glioma , MicroRNAs , Animals , Apoptosis , Glioma/genetics , Mice , MicroRNAs/genetics , Microglia , Tumor Microenvironment
20.
Chronobiol Int ; 38(3): 451-465, 2021 03.
Article En | MEDLINE | ID: mdl-33435737

A telemetry system based on Bluetooth Low Energy (BLE) was constructed to simultaneously collect locomotor activity and physiological signals of small animal cohorts for circadian rhythm experiments; it consists of miniature transmitters and mobile phone with customized App. The continuous sampling signals obtained from the 3-axis acceleration and temperature sensors in the transmitters are sent to the mobile phone in real-time through Internet of Things (IoT) for temporary storage and then imported into the computer for summary and rhythm analysis by the general open-source mathematical software. Unlike expensive and complicated commercial telemetry systems with industrial wireless standards, no special data receivers and software are needed. In our validation experiment, six rats were divided into two groups under natural dark and light-dark cycles. For two consecutive weeks, the transmitter mounted on the head of the rat-recorded locomotor activity, skin temperature, and ambient temperature of each rat at a frequency of 6 Hz. After processing with Local Weighted Regression Scatter Smoothing (LOWESS) and Fast Fourier Transform (FFT) filtering, single cosinor and multi-components cosinor were then used to assess and characterize the circadian rhythm. The results showed that the rhythm values of the two groups of rats coincided with the corresponding light-dark cycle, and that the system was robust to data loss and error from BLE communication failures. Therefore, the proposed system provides a light-weight framework for long-term circadian rhythm monitoring in free-moving rodents to further simplify and promote experimental chronobiology animal studies.


Circadian Rhythm , Telemetry , Animals , Animals, Laboratory , Computers , Rats , Software
...