Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 164
1.
ACS Biomater Sci Eng ; 9(10): 5832-5842, 2023 10 09.
Article En | MEDLINE | ID: mdl-37679307

Identification of diverse biomarkers in heterogenic circulating malignant cells (CMCs) such as circulating tumor cells (CTCs) and circulating tumor endothelial cells (CTECs) has crucial significance in tumor diagnosis. However, it remains a substantial challenge to achieve in situ detection of multiple miRNA markers in living cells in blood. Herein, we demonstrate that an aptamer/peptide-functionalized vector can deliver molecular beacons into targeted living CMCs in peripheral blood of patients for in situ detection of multiple cancer biomarkers, including miRNA-21 (miR-21) and miRNA-221 (miR-221). Based on miR-21 and miR-221 levels, heterogenic CMCs are identified for both nondistant metastatic and distant metastatic cancer patients. CMCs from nondistant metastatic and distant metastatic cancer patients exhibit similar miR-21 levels, while the miR-221 level in CMCs of the distant metastatic cancer patient is higher than that of the nondistant metastatic cancer patient. With the capability to realize precise probing of multiple intracellular biomarkers in living CMCs at the single-cell resolution, the nanoprobe can reveal the tumor heterogeneity and provide useful information for diagnosis and prognosis. The nanoprobe we developed would accelerate the progress toward noninvasive precise cancer diagnosis.


MicroRNAs , Neoplastic Cells, Circulating , Humans , MicroRNAs/genetics , Neoplastic Cells, Circulating/pathology , Endothelial Cells/pathology , Biomarkers, Tumor/genetics
2.
Adv Sci (Weinh) ; 10(29): e2303309, 2023 10.
Article En | MEDLINE | ID: mdl-37590231

Cell fusion plays a critical role in cancer progression and metastasis. However, effective modulation of the cell fusion behavior and timely evaluation on the cell fusion to provide accurate information for personalized therapy are facing challenges. Here, it demonstrates that the cancer cell fusion behavior can be efficiently modulated and precisely detected through employing a multifunctional delivery vector to realize cancer targeting delivery of a genome editing plasmid and a molecular beacon-based AND logic gate. The multifunctional delivery vector decorated by AS1411 conjugated hyaluronic acid and NLS-GE11 peptide conjugated hyaluronic acid can specifically target circulating malignant cells (CMCs) of cancer patients to deliver the genome editing plasmid for epidermal growth factor receptor (EGFR) knockout. The cell fusion between CMCs and endothelial cells can be detected by the AND logic gate delivered by the multifunctional vector. After EGFR knockout, the edited CMCs exhibit dramatically inhibited cell fusion capability, while unedited CMCs can easily fuse with human umbilical vein endothelial cells (HUVEC) to form hybrid cells. This study provides a new therapeutic strategy for preventing cancer progression and a reliable tool for evaluating cancer cell fusion for precise personalized therapy.


Endothelial Cells , Neoplasms , Humans , Cell Fusion , Endothelial Cells/metabolism , Hyaluronic Acid , Gene Editing , Neoplasms/therapy , ErbB Receptors
3.
Nano Lett ; 23(9): 3678-3686, 2023 05 10.
Article En | MEDLINE | ID: mdl-37052638

Identification of cancer metastatic sites is of importance for adjusting therapeutic interventions and treatment choice. However, identifying the location of metastatic lesions with easy accessibility and high safety is challenging. Here we demonstrate that cancer metastatic sites can be accurately detected by a triple targeting nanoprobe. Through coencapsulating molecular beacons probing a cancer biomarker (CXCR4 mRNA), a lung metastatic biomarker (CTSC mRNA), and a bone metastatic biomarker (JAG1 mRNA), the nanoprobe decorated by SYL3C conjugated hyaluronic acid and ICAM-1 specific aptamer conjugated hyaluronic acid can target diverse phenotyped circulating tumor cells (CTCs) during epithelial-mesenchymal and mesenchymal-epithelial transitions in whole blood for sensitive probing. The detection of CTCs from cancer patients shows that the nanoprobe can provide accurate information to distinguish different cancer metastasis statuses including nonmetastasis, lung metastasis, and bone metastasis. This study proposes an efficient screening tool for identifying the location of distant metastatic lesions via facile blood biopsy.


Neoplastic Cells, Circulating , Humans , Hyaluronic Acid , Biomarkers, Tumor/genetics , Biopsy , RNA, Messenger/genetics , Neoplasm Metastasis
4.
Biomaterials ; 296: 122072, 2023 05.
Article En | MEDLINE | ID: mdl-36878091

Alcohol intoxication causes serious diseases, whereas current treatments are mostly supportive and unable to convert alcohol into nontoxic products in the digestive tract. To address this issue, an oral intestinal-coating coacervate antidote containing acetic acid bacteria (AAB) and sodium alginate (SA) mixture was constructed. After oral administration, SA reduces absorption of ethanol and promotes the proliferation of AAB, and AAB converts ethanol to acetic acid or carbon dioxide and water by two sequential catalytic reactions in the presence of membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). In vivo study shows that the bacteria-based coacervate antidote can significantly reduce the blood alcohol concentration (BAC) and effectively alleviates alcoholic liver injury in mice. Given the convenience and effectiveness of oral administration, AAB/SA can be used as a promising candidate antidote for relieving alcohol-induced acute liver injury.


Alcoholic Intoxication , Antidotes , Mice , Animals , Antidotes/pharmacology , Antidotes/therapeutic use , Blood Alcohol Content , Ethanol/pharmacology , Liver , Aldehyde Dehydrogenase/pharmacology
5.
Sci Bull (Beijing) ; 68(6): 622-636, 2023 03 30.
Article En | MEDLINE | ID: mdl-36914548

Activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway could effectively initiate antitumor immunity, but specific activation of STING pathway is still an enormous challenge. Herein, a ferroptosis-induced mitochondrial DNA (mtDNA)-guided tumor immunotherapy nanoplatform (designated as HBMn-FA) was elaborately developed for activating and boosting STING-based immunotherapy. On the one hand, the high-levels of reactive oxygen species (ROS) in tumor cells induced by HBMn-FA-mediated ferroptosis elicited mitochondrial stress to cause the release of endogenous signaling mtDNA, which specifically initiate cGAS-STING pathway with the cooperation of Mn2+. On the other hand, the tumor-derived cytosolic double-stranded DNA (dsDNA) from debris of death cells caused by HBMn-FA further activated the cGAS-STING pathway in antigen-presenting cells (e.g., DCs). This bridging of ferroptosis and cGAS-STING pathway could expeditiously prime systemic antitumor immunity and enhance the therapeutic efficacy of checkpoint blockade to suppress tumor growth in both localized and metastatic tumor models. The designed nanotherapeutic platform paves the way for novel tumor immunotherapy strategies that are based on specific activation of STING pathway.


Ferroptosis , Interferon Type I , Neoplasms , Humans , DNA, Mitochondrial , Immunotherapy , Interferon Type I/metabolism , Neoplasms/therapy , Nucleotidyltransferases/genetics
6.
Adv Mater ; 35(16): e2207227, 2023 Apr.
Article En | MEDLINE | ID: mdl-36314402

The chronic rejection responses and side effects of the systematic administration of immunosuppressants are the main obstacles to heart allograft and patient survival. The development of xenotransplantation also urgently requires more efficient immune regulation strategies. Herein, it is demonstrated that lymph-node (LN)-targeted drug delivery can realize LN-specific immunomodulation with attenuated immune suppression on distant peripheral immune organs to effectively prolong long-term survival after heart transplantation in a chronic murine heart transplantation model. A chemokine C-C motif ligand 21 (CCL21) specific aptamer for LN targeting is decorated onto the surface of the hybrid nanoparticular delivery vector mainly composed of CaCO3 /CaP/heparin. The targeting delivery system can dramatically enhance accumulation of the loaded immunosuppressant, fingolimod hydrochloride (FTY720), in draining lymph nodes (dLNs) for inducing powerful immune suppression. By promoting the generation of endogenous regulatory T cells (Tregs ) and decreasing the proportion of effector T cells (Teffs ) in dLNs after heart transplantation, the LN-targeting strategy can effectively regulate local immune responses instead of systemic immunity, which reduces the incidence of long-term complications. This study provides an efficient strategy to improve the survival rate after organ transplantation by precise and localized immunoregulation with minimized side effects of immunosuppression.


Heart Transplantation , Lymph Nodes , Mice , Humans , Animals , Drug Delivery Systems , Immunosuppressive Agents/pharmacology , Fingolimod Hydrochloride/pharmacology , Immune Tolerance , Immunity , Immunomodulation
7.
Adv Healthc Mater ; 12(4): e2202155, 2023 02.
Article En | MEDLINE | ID: mdl-36333906

Cancer heterogeneity plays a vital part in cancer resistance and metastasis. To provide a reliable approach to exert a therapy action and evaluate its efficiency in heterogeneous cancer cells, a multiple targeting delivery vector composed of histone encapsulating the therapeutic or diagnostic agent, hyaluronic acid targeting CD44 overexpressed in stem tumor cells, SYL3C aptamer targeting epithelial cell adhesion molecule (EpCAM) overexpressed in epithelial cancer cells, and CL4 aptamer targeting epidermal growth factor receptor (EGFR) overexpressed in mesenchymal cancer cells, is developed. The vector can efficiently target different cancer cells and circulating tumor cells (CTCs) in the peripheral blood of patients for mucin 1 (MUC1) knockout. Furthermore, the multiple targeting vector can be used to co-encapsulate three types of molecular beacons for probing various mRNA biomarkers at single-cell resolution after genome editing. This study provides an efficient approach for exerting therapeutic actions in heterogeneous cancer cells and assessing the therapeutic efficacy by detection of cancer biomarkers via liquid biopsy.


Neoplastic Cells, Circulating , Humans , Cell Line, Tumor , Epithelial Cell Adhesion Molecule/genetics , Neoplastic Cells, Circulating/metabolism , Biomarkers, Tumor
8.
Anal Chem ; 94(49): 17334-17340, 2022 12 13.
Article En | MEDLINE | ID: mdl-36456915

Cell-cell fusion studies provide an experimental platform for evaluating disease progression and investigating cell infection. However, to realize sensitive and quantitative detection on cell-cell fusion is still a challenge. Herein, we report a facile molecular beacon (MB)-based method for precise detection on cell-cell fusion. By transfection of the spike protein (S protein) and enhanced green fluorescent protein (EGFP) in HEK 293 cells, the virus-mimicking fusogenic effector cells 293-S-EGFP cells were constructed to interact with target cells. Before mixing the effector cells with the target cells, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in 293-S-EGFP cells was silenced, and the MB for GAPDH mRNA detection was delivered into the GAPDH silenced 293-S-EGFP cells. Once cell-cell fusion occurred, MB migrated from the GAPDH silenced effector cells to the target cells and hybridized with GAPDH mRNA in the target cells to induce fluorescence emission. The cell-cell fusion can be easily visualized and quantitated by fluorescence microscopy and flow cytometry. The fluorescence intensity is strongly dependent on the number of fused target cells. This MB-based method can easily identify the differences in the cell fusions for various target cells with different angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) expression levels, resulting in dramatically different fluorescence intensities in fused target cells. Our study provides a convenient and efficient quantitative detection approach to study cell-cell fusion.


Cell Fusion , Humans , HEK293 Cells , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Transfection , Flow Cytometry , RNA, Messenger/genetics
9.
ACS Nano ; 16(11): 18555-18567, 2022 11 22.
Article En | MEDLINE | ID: mdl-36341683

Recent advances in tumor immunotherapy mainly tend to remodel the immunosuppressive tumor microenvironment (TME) for immune enhancement. However, the complexity of TME makes it unlikely to achieve satisfactory therapeutic effects with any single intervention alone. Here, we focus on exposing intrinsic features of tumor cells to trigger direct pleiotropic antitumor immunity. We develop a photosensitive nanointerferer that is engineered with a nanoscale metal-organic framework decorated with tumor cell membranes for targeted delivery of a photosensitizer and small interfering RNA, which is used to knock down cyclin-dependent kinase 4 (Cdk4). Cdk4 blockade can arrest the cell cycle of tumor cells to facilitate antigen exposure and increase the expression level of programmed cell death protein ligand 1 (PD-L1). Under laser irradiation, photodynamic damage triggered by the nanointerferer induces the release of tumor antigens and recruitment of dendritic cells (DCs), thereby promoting the antitumor activity of CD8+ T cells in combination with anti-PD-L1 antibodies. Ultimately, these events markedly retard tumor progression in a mouse model of ectopic colon tumor with negligible adverse effects. This study provides an alternative treatment for effective antitumor immunity by exciting the intrinsic potential of tumor cells to initiate immune responses while reducing immune-related toxicities.


CD8-Positive T-Lymphocytes , Colonic Neoplasms , Mice , Animals , Immunotherapy , Tumor Microenvironment , Cell Cycle Checkpoints , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Cell Line, Tumor
10.
Nano Lett ; 22(21): 8608-8617, 2022 11 09.
Article En | MEDLINE | ID: mdl-36259687

The chemotherapeutic effectiveness of pancreatic ductal adenocarcinoma (PDAC) is severely hampered by insufficient intratumoral delivery of antitumor drugs. Here, we demonstrate that enhanced pancreatic cancer chemotherapy can be achieved by probiotic spore-based oral drug delivery system via gut-pancreas axis translocation. Clostridium butyricum spores resistant to harsh external stress are extracted as drug carriers, which are further covalently conjugated with gemcitabine-loaded mesoporous silicon nanoparticles (MGEM). The spore-based oral drug delivery system (SPORE-MGEM) migrates upstream into pancreatic tumors from the gut, which increases intratumoral drug accumulation by ∼3-fold compared with MGEM. In two orthotopic PDAC mice models, tumor growth is markedly suppressed by SPORE-MGEM without obvious side effects. Leveraging the biological contact of the gut-pancreas axis, this probiotic spore-based oral drug delivery system reveals a new avenue for enhancing PDAC chemotherapy.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Probiotics , Mice , Animals , Cell Line, Tumor , Spores, Bacterial , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Drug Delivery Systems , Pancreas/pathology , Pancreatic Neoplasms
11.
Anal Chem ; 94(30): 10610-10616, 2022 08 02.
Article En | MEDLINE | ID: mdl-35856393

To study the heterogeneity of circulating tumor cells (CTCs) is of crucial importance to analyze cancer progression and metastasis. However, in situ detection of highly heterogeneous CTCs in peripheral blood still faces an elusive challenge. Here, we show direct detection of two metastasis-related mRNAs of diverse CTCs in whole blood by a triple-targeting nanoprobe. In the nanoprobe, two kinds of molecular beacons, MB1 to detect RPL15 mRNA and MB2 to detect E-cadherin (E-cad) mRNA, are loaded in a highly efficient delivery vector decorated with EpCAM-targeted SYL3C, EGFR-targeted CL4, and CD44-targeted hyaluronic acid chains to specifically deliver MB1/MB2 into epithelial, mesenchymal, and stem CTCs in unprocessed peripheral blood. The numbers of RPL15+ and E-cad+ CTCs are positively correlated with the metastasis stages of cancer patients. This study provides an effective strategy to realize direct observation on diverse metastasis-related genes in living CTCs with different phenotypes to provide accurate information on cancer heterogeneity and metastasis.


Cadherins , Neoplastic Cells, Circulating , Ribosomal Proteins , Antigens, CD , Biomarkers, Tumor , Cadherins/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplastic Cells, Circulating/pathology , RNA, Messenger/genetics , Ribosomal Proteins/genetics
12.
Pharmaceutics ; 14(7)2022 Jul 09.
Article En | MEDLINE | ID: mdl-35890334

Chronic hepatitis B is a critical cause of many serious liver diseases such as hepatocellular carcinoma (HCC). The main challenges in hepatitis B treatment include the rebound of hepatitis B virus (HBV)-related antigen levels after drug withdrawal and the immunosuppression caused by the virus. Herein, we demonstrate that the HBV-related antigen can be effectively inhibited and antiviral immunity can be successfully reactivated through codelivery of the small interfering RNA (siRNA) targeting HBV X protein (HBx) and the plasmid encoding interleukin 12 (pIL-12) to hepatocytes and immune cells. After being treated by the siRNA/pIL-12 codelivery system, HBx mRNA and hepatitis B surface antigen (HBsAg) are dramatically reduced in HepG2.215 cells. More importantly, the downregulated CD47 and programmed death ligand 1 (PD-L1) and the upregulated interferon-ß promoter stimulator-1 (IPS-1), retinoic acid-inducible gene-1 (RIG-1), CD80, and human leukocyte antigen-1 (HLA-1) in treated HepG2.215 cells indicate that the immunosuppression is reversed by the codelivery system. Furthermore, the codelivery system results in inhibition of extracellular regulated protein kinases (ERK) and phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) pathways, as well as downregulation of B-cell lymphoma-2 (Bcl-2) and upregulation of p53, implying its potential in preventing the progression of HBV-induced HCC. In addition, J774A.1 macrophages treated by the codelivery system were successfully differentiated into the M1 phenotype and expressed enhanced cytokines with anti-hepatitis B effects such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Therefore, we believe that codelivery of siRNA and pIL-12 can effectively inhibit hepatitis B virus, reverse virus-induced immunosuppression, reactivate antiviral immunity, and hinder the progression of HBV-induced hepatocellular carcinoma. This investigation provides a promising approach for the synergistic treatment of HBV infection.

13.
Adv Sci (Weinh) ; 9(21): e2105806, 2022 07.
Article En | MEDLINE | ID: mdl-35595716

Tumor heterogeneity is primarily responsible for treatment resistance and cancer relapses. Being critically important to address this issue, the timely evaluation of the appropriateness of therapeutic actions at the single-cell level is still facing challenges. By using multi-functionalized nano-systems with the delivery vector composed of histone for plasmids loading, hyaluronic acid for tumor targeting, and a fusion peptide for C-X-C motif chemokine receptor 4 (CXCR4) targeting as well as nuclear localization, the reprogramming of circulating tumor cells (CTCs) with in situ detection on biomarkers at the single-cell level is realized. By efficient co-delivery of the genome editing plasmid for CXCR4 knockout and molecular beacons for detection of upregulated mRNA biomarkers into CTCs in unprocessed whole blood, the therapeutic outcomes of genome editing at the single-cell level can be in situ evaluated. The single-cell analysis shows that CXCR4 in CTCs of cancer patients is efficiently downregulated, resulting in upregulated anticancer biomarkers such as p53 and p21. The study provides a facile strategy for in-depth profiling of cancer cell responses to therapeutic actions at single-cell resolution to evaluate the outcomes of treatments timely and conveniently.


Neoplastic Cells, Circulating , Cell Count , Gene Editing/methods , Humans , Neoplasm Recurrence, Local , Plasmids
14.
J Control Release ; 343: 645-656, 2022 03.
Article En | MEDLINE | ID: mdl-35157940

Therapy resistance associated with relapse is a main cause of death in acute myeloid leukemia (AML). To address this issue, a dual-targeting CRISPR-Cas9 genome editing nanosystem was constructed for CXCR4 knockout to reverse the malignancy of leukemia cells. The surface of the dual-targeting nanosystem is composed of MUC1 specific aptamer incorporated alginate (MUC1 aptamer-alginate) and T22-NLS peptide with T22 sequence targeting CXCR4; the core of the nanosystem consists of protamine complexed with CRISPR-Cas9 plasmid. The in vitro study shows that the nanosystem mediated genome editing induces cell apoptosis, cell cycle arrest, as well as inhibited cell migration and adhesion in edited THP-1 cells after CXCR4 knockout. Further, the unprocessed peripheral blood from acute myeloid leukemia (AML) patients was directly used to carry out ex vivo study. The results show the genome editing nanosystem can effectively knock out CXCR4 in leukemia cells, leading to attenuated CXCR4 protein as studied by antibody labeling and reduced CXCR4 mRNA as probed by a molecular beacon delivery system. In addition to developing a promising delivery vector for gene therapy on AML, this study also provides an effective strategy to evaluate the therapeutic efficiency of particular treatments by peripheral blood-based ex vivo studies.


Gene Editing , Leukemia, Myeloid, Acute , Alginates , CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Therapy , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/therapy , Plasmids
15.
Anal Chem ; 94(5): 2399-2407, 2022 02 08.
Article En | MEDLINE | ID: mdl-35099175

The potential toxicity of nanoparticles, especially for clinically applicable ones, has become a critical concern. Technologies that can in situ-evaluate the toxicity of nanoparticles with high sensitivity are urgently needed. In this study, a facile strategy was developed for sensitive detection on the nanotoxicity of nanoparticles with low toxicity or a low dose. A functional nanoprobe loaded with molecular beacons was constructed to realize in situ evaluation of the nanotoxicity through probing multiple miRNAs in nanoparticle-exposed living cells. Being composed of protamine complexed with molecular beacons for miRNA detection and decorated by TAT and KALA peptides, the dual-peptide functionalized nanoprobe can efficiently deliver molecular beacons into living cells to realize the real-time monitoring of early biomarkers (miR-21 and miR-221) to evaluate nanotoxicity. Using mesoporous silica nanoparticles (MSNs) with different surface modifications as typical representatives of low toxic nanoparticles, we demonstrate that our nanoprobe can sensitively detect miRNA changes in cells under diverse exposure conditions, that is, MSN-NH2 exhibits the strongest capability to upregulate miR-21 and miR-221, and the upregulation is exposure dose- and time-dependent. Our approach is much more sensitive as compared with conventional methods to study cytotoxicity such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell morphology observation, and reactive oxygen species (ROS) assay. This study paves a path for effective and facile nanotoxicity evaluation and provides insights into the biological impacts of MSNs.


MicroRNAs , Nanoparticles , MicroRNAs/genetics , Nanoparticles/chemistry , Nanoparticles/toxicity , Peptides/toxicity , Porosity , Reactive Oxygen Species , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity
16.
Nano Lett ; 21(18): 7569-7578, 2021 09 22.
Article En | MEDLINE | ID: mdl-34472343

Selective amplification of reactive oxygen species (ROS) generation in tumor cells has been recognized as an effective strategy for cancer therapy. However, an abnormal tumor metabolism, especially the mitochondrial glutaminolysis, could promote tumor cells to generate high levels of antioxidants (e.g., glutathione) to evade ROS-induced damage. Here, we developed a tumor-targeted nanoparticle (NP) platform for effective breast cancer therapy via combining inhibition of mitochondrial glutaminolysis and chemodynamic therapy (CDT). This NP platform is composed of bovine serum albumin (BSA), ferrocene, and purpurin. After surface decoration with a tumor-targeting aptamer and then intravenous administration, this NP platform could target tumor cells and release ferrocene to catalyze hydrogen peroxide (H2O2) into the hydroxyl radical (·OH) for CDT. More importantly, purpurin could inhibit mitochondrial glutaminolysis to concurrently prevent the nutrient supply for tumor cells and disrupt intracellular redox homeostasis for enhanced CDT, ultimately leading to the combinational inhibition of tumor growth.


Nanoparticles , Neoplasms , Animals , Cell Line, Tumor , Glutathione/metabolism , Humans , Hydrogen Peroxide , Mice , Neoplasms/drug therapy , Oxidative Stress , Xenograft Model Antitumor Assays
17.
Biosens Bioelectron ; 190: 113401, 2021 Oct 15.
Article En | MEDLINE | ID: mdl-34119837

Molecular analysis of circulating tumor cells (CTCs) is of critical significance for the non-invasive early detection of tumors. However, in situ detection of intracellular nucleic acids of CTCs in whole blood still remains challenge. By using a highly efficient tumor targeting nanoprobe, we realize in situ detection of microRNA-21 (miR-21) of living CTCs in unprocessed whole blood. In the nanoprobe, a catalytic hairpin assembly (CHA) system is complexed with protamine sulfate (PS), and then decorated by SYL3C conjugated hyaluronic acid (SHA) and hyaluronic acid (HA). The CHA system can be specifically delivered into living CTCs in whole blood, followed by hybridization between the CHA system and intracellular miR-21 in CTCs to induce strong fluorescence emission. After isolation of CTCs by membrane filtration, CTCs of cancer patients can be directly visualized by a fluorescence microscope for miR-21 detection at a single-cell level. Our study provides an efficient strategy to realize in situ genomic analysis of living CTCs in whole blood.


Biosensing Techniques , MicroRNAs , Neoplastic Cells, Circulating , Cell Count , Humans , MicroRNAs/genetics , Nucleic Acid Hybridization
18.
J Am Chem Soc ; 143(13): 5127-5140, 2021 04 07.
Article En | MEDLINE | ID: mdl-33764762

Immunotherapy has provided a promising strategy for the treatment of cancers. However, even in tumors with high antigen burdens, the systemic inhibition of the antigen presentation still greatly restricts the application of immunotherapy. Here, we construct a tumor protein-engineering system based on the functional tripeptide, Asp-Phe-Tyr (DFY), which can automatically collect and deliver immunogenetic tumor proteins from targeted cells to immune cells. Through a tyrosinase-catalyzed polymerization, the DFY tripeptide selectively accumulates in tyrosinase high-expressed melanoma cells. Then quinone-rich intermediates are covalently linked with tumor-specific proteins by Michael addition and form tumor protein-carried microfibers that could be engulfed by antigen-presenting cells and exhibited tumor antigenic properties for boosting immune effect. In melanoma cells with deficient antigen presentation, this system can successfully enrich and transport tumor antigen-containing proteins to immune cells. Furthermore, in the in vivo study on murine melanoma, the transdermal delivery of the DFY tripeptide suppressed the tumor growth and the postsurgery recurrence. Our findings provide an avenue for the regulation of the immune system on an organism by taking advantage of certain polymerization reactions by virtue of chemical biology.


Immunotherapy/methods , Melanoma, Experimental/therapy , Monophenol Monooxygenase/metabolism , Oligopeptides/therapeutic use , Administration, Cutaneous , Animals , Antigen-Presenting Cells/immunology , Catalysis , Melanoma, Experimental/immunology , Mice , Oligopeptides/administration & dosage , Oligopeptides/metabolism , Polymerization
19.
ACS Appl Bio Mater ; 4(6): 4946-4952, 2021 06 21.
Article En | MEDLINE | ID: mdl-35007043

Oxygen-dependent photodynamic therapy (PDT) is hindered by the limited availability of endogenous oxygen in solid tumors and low tumor accumulation of photosensitizers. Herein, we developed a biocompatible cancer-targeted therapeutic nanosystem based on cRGD conjugated bovine serum albumin (CBSA) co-loaded with a photosensitizer (chlorin e6, Ce6) and a therapeutic protein (cytochrome c, Cytc) for synergistic photodynamic and protein therapy. The nanosystem (Ce6/Cytc@CBSA) can target αVß3 integrin overexpressed cancer cells to improve tumor accumulation due to incorporation of cRGD. In the intracellular environment, Ce6 is released to produce toxic singlet oxygen upon near-infrared irradiation. At the same time, the therapeutic protein, Cytc, can induce programmed cell death by activating the downstream caspase pathway. Most importantly, Cytc with the catalase-like activity accelerates O2 generation by decomposing excess H2O2 in cancer cells, thereby relieving the PDT-induced hypoxia to enhance therapeutic efficacy. Both in vitro and in vivo studies reveal the significantly improved antitumor effects of the combined photodynamic/protein therapy, indicating that Ce6/Cytc@CBSA shows great potential in synergetic cancer treatments.


Chlorophyllides/administration & dosage , Cytochromes c/administration & dosage , Nanostructures/administration & dosage , Neoplasms/drug therapy , Photochemotherapy , Photosensitizing Agents/administration & dosage , Animals , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , Chlorophyllides/pharmacokinetics , Cytochromes c/pharmacokinetics , Drug Synergism , Female , Mice, Inbred BALB C , Neoplasms/metabolism , Peptides, Cyclic/administration & dosage , Photosensitizing Agents/pharmacokinetics , Polyethylene Glycols/administration & dosage , Reactive Oxygen Species/metabolism , Serum Albumin, Bovine/administration & dosage , Tissue Distribution
20.
Chem Sci ; 11(17): 4403-4409, 2020 May 07.
Article En | MEDLINE | ID: mdl-33209242

Accumulating evidence indicates that colonized microbes play a crucial role in regulating health and disease in the human body. Detecting microbes should be essential for understanding the relationship between microbes and diseases, as well as increasing our ability to detect diseases. Here, a combined metabolic labeling strategy was developed to identify different bacterial species and microbiota by the use of three different fluorescent metabolite derivatives emitting red, green, and blue (RGB) fluorescence. Upon co-incubation with microbes, these fluorescent metabolite derivatives are incorporated into bacteria, generating unique true-color fingerprints for different bacterial species and different microbiota. A portable spectrometer was also fabricated to automate the colorimetric analysis in combination with a smartphone to conveniently identify different bacterial species and microbiota. Herein, the effectiveness of this system was demonstrated by the identification of certain bacterial species and microbiota in mice with different diseases, such as skin infections and bacteremia. By analyzing the microbiota fingerprints of saliva samples from clinical patients and healthy people, this system was proved to precisely distinguish oral squamous cell carcinoma (OSCC, n = 29) samples from precancerous (n = 10) and healthy (n = 5) samples.

...