Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Cell Death Differ ; 31(6): 697-710, 2024 Jun.
Article En | MEDLINE | ID: mdl-38589495

Hematopoietic stem and progenitor cells (HSPCs) that have impaired differentiation can transform into leukemic blasts. However, the mechanism that controls differentiation remains elusive. Here, we show that the genetic elimination of Proteinase 3 (PRTN3) in mice led to spontaneous myeloid differentiation. Mechanistically, our findings indicate that PRTN3 interacts with the N-terminal of STAT3, serving as a negative regulator of STAT3-dependent myeloid differentiation. Specifically, PRTN3 promotes STAT3 ubiquitination and degradation, while simultaneously reducing STAT3 phosphorylation and nuclear translocation during G-CSF-stimulated myeloid differentiation. Strikingly, pharmacological inhibition of STAT3 (Stattic) partially counteracted the effects of PRTN3 deficiency on myeloid differentiation. Moreover, the deficiency of PRTN3 in primary AML blasts promotes the differentiation of those cells into functional neutrophils capable of chemotaxis and phagocytosis, ultimately resulting in improved overall survival rates for recipients. These findings indicate PRTN3 exerts an inhibitory effect on STAT3-dependent myeloid differentiation and could be a promising therapeutic target for the treatment of acute myeloid leukemia.


Cell Differentiation , Leukemia, Myeloid, Acute , Myeloblastin , STAT3 Transcription Factor , Animals , STAT3 Transcription Factor/metabolism , Mice , Humans , Myeloblastin/metabolism , Myeloblastin/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred C57BL , Myeloid Cells/metabolism , Myeloid Cells/pathology , Mice, Knockout , Ubiquitination , Phosphorylation
2.
Oncol Lett ; 17(5): 4667-4674, 2019 May.
Article En | MEDLINE | ID: mdl-30944654

Cervical cancer is the second most prevalent malignant tumor in women worldwide. Failure of successful treatment is most prevalent in patients with the metastatic disease and the chemotherapy refractory disease. Tumor necrosis factor α-induced protein 8 (TNFAIP8) serves as an anti-apoptotic and pro-oncogenic protein, and is associated with cancer progression and poor prognosis in a number of different cancer types. However, the physiological and pathophysiological roles of TNFAIP8 in cervical carcinogenesis and development remain poorly understood. In the present study, it was demonstrated that TNFAIP8 protein expression levels were significantly increased in cervical cancer tissues compared with the non-tumor adjacent tissues using immunohistochemistry. Additionally, it was demonstrated that TNFAIP8 overexpression is associated with cisplatin resistance. Furthermore, depletion of TNFAIP8 impaired HeLa cell proliferation and viability in vitro, improved cisplatin sensitivity, and promoted cisplatin-induced cellular apoptosis and death. Subsequent mechanistic analysis demonstrated that TNFAIP8 silencing promoted caspase-8/-3 activation and p38 phosphorylation in HeLa cells treated with cisplatin, whereas apoptosis regulator B-cell lymphoma-2 expression was inhibited with TNFAIP8-silenced HeLa cells following treatment with cisplatin. These data suggested that TNFAIP8 serves as an anti-apoptotic protein against cisplatin-induced cell death, which eventually leads to chemotherapeutic drug-treatment failure. Therefore, the present data suggested that TNFAIP8 may be a promising therapeutic target for the treatment of cervical cancer.

...