Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
J Environ Manage ; 354: 120319, 2024 Mar.
Article En | MEDLINE | ID: mdl-38387348

Land-use change worldwide has been driven by anthropogenic activities, which profoundly regulates terrestrial C and N cycles. However, it remains unclear how the dynamics and decomposition of soil organic C (SOC) and N respond to long-term conversion of rice paddy to wetland. Here, soil samples from five soil depths (0-25 cm, 5 cm/depth) were collected from a continuous rice paddy and an adjacent wetland (a rice paddy abandoned for 12 years) on Shonai Plain in northeastern Japan. A four-week anaerobic incubation experiment was conducted to investigate soil C decomposition and N mineralization. Our results showed that SOC in the wetland and rice paddy decreased with soil depth, from 31.02 to 19.66 g kg-1 and from 30.26 to 18.86 g kg-1, respectively. There was no significant difference in SOC content between wetland and rice paddy at any depth. Soil total nitrogen (TN) content in the wetland (2.61-1.49 g kg-1) and rice paddy (2.91-1.78 g kg-1) showed decreasing trend with depth; TN was significantly greater in the rice paddy than in the wetland at all depths except 20-25 cm. Paddy soil had significantly lower C/N ratios but significantly larger decomposed C (Dec-C, CO2 and CH4 production) and mineralized N (Min-N, net NH4+-N production) than wetland soil across all depths. Moreover, the Dec-C/Min-N ratio was significantly larger in wetland than in rice paddy across all depths. Rice paddy had higher exponential correlation between Dec-C and SOC, Min-N and TN than wetland. Although SOC did not change, TN decreased by 14.1% after the land-use conversion. The Dec-C and Min-N were decreased by 32.7% and 42.2%, respectively, after the12-year abandonment of rice paddy. Conclusively, long-term conversion of rice paddy to wetland did not distinctly alter SOC content but increased C/N ratio, and decreased C decomposition and N mineralization in 0-25 cm soil depth.


Oryza , Soil , Agriculture/methods , Wetlands , Japan , Carbon/analysis , Nitrogen/analysis , China
2.
Chemistry ; 30(19): e202303739, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38287793

To expand the market capacity of p-diethylbenzene (PDEB), core-shell zeolite (TS-1@MCM-48) is designed as a catalyst for PDEB oxidation. TS-1@MCM-48 catalyst is synthesized by in-situ crystallization method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, in-situ electron paramagnetic resonance (EPR) and 29Si nuclear magnetic resonance (29Si MAS-NMR). Oxidation of PDEB by H2O2 was investigated systematically in liquid phase. The conversion of PDEB over TS-1@MCM-48 was 28.1 % and the total selectivity was 72.6 %, where the selectivity of EAP (p-ethylacetophenone) and EPEA (4-ethyl-α-methylbenzyl alcohol) was 28.6 % and 44.0 %, respectively. Compared with TS-1 and MCM-48 zeolite, the conversion rate of reactants and the selectivity of products have been significantly improved. The catalytic performance of TS-1@MCM-48 is derived from its well-crystallized microporous core and mesoporous shell with regular channels, which make active sites of TS-1 zeolite in the catalyst be fully utilized and mass transfer resistance be largely reduced. Further through theoretical calculation, we propose that the oxidation of PDEB is the result of the combination and mutual transformation of free radical process and carbocation process. Core-shell structure ensures the conversion rate of raw materials and improves the selectivity of products.

3.
Sci Total Environ ; 912: 169481, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38142001

Understanding the effects of land-use change on stock and composition of soil organic carbon (SOC) and nitrogen (N) is pivotal for sustainable agriculture and climate change adaption. However, previous studies have often overlooked the specific vegetation type in land-use changes. Therefore, a five-year lysimeter block experiment was conducted, involving non-vegetation, eulalia (C4 plant), and clover (C3 plant) to investigate the impacts of vegetation conversion from pasture on SOC and N dynamics and their natural stable isotopes. Non-vegetation caused 26.21 % and 25.88 % decreases in SOC and total N (TN) contents. Five-year eulalia and clover cultivation maintained stable SOC content, with clover exhibiting higher soil TN content. Eulalia-derived soil C was 1.64-7.58 g C kg-1 and SOC loss in eulalia treatment was 1.86-7.90 g C kg-1. Soil δ13C in eulalia increased at a rate of 0.90 ‰ year-1, significantly surpassing clover and non-vegetation treatments. Conversely, soil δ15N decreased over time, showing insignificant difference among all treatments. Eulalia exhibited significantly higher dry weight and δ13C but lower TN content compared with clover. However, no significant differences were observed in total C and δ15N between the two vegetation treatments. Non-vegetation exhibited higher dissolved organic C concentration than two vegetation treatments in 2017, decreasing over time. Dissolved TN and nitrate concentrations in leachate followed the order clover> non-vegetation> eulalia, with nitrate being the predominant form of N leaching from leachate. Our findings reveal that vegetation conversion affects soil C and N contents, and alters their natural isotopes as well as the leaching of labile soluble nutrients. Notably, non-vegetation consistently reduced SOC and TN contents, whereas eulalia cultivation maintained SOC content, improved C/N ratio and δ13C, and reduced N leaching compared with clover cultivation. These results highlight the potential of eulalia as a candidate plant for enhancing C sequestration and reducing N leaching in cold regions of Japan.

4.
Physiol Plant ; 175(6): e14107, 2023.
Article En | MEDLINE | ID: mdl-38148232

Phosphorus (P) deficiency alters the root morphological and physiological traits of plants. This study investigates how soybean cultivars with varying low-P tolerance values respond to different P levels in hydroponic culture by assessing alterations in root length, acid phosphatase activity, organic acid exudation, and metabolites in root exudates. Three low-P-tolerant cultivars ('Maetsue,' 'Kurotome,' and 'Fukuyutaka') and three low-P-sensitive cultivars ('Ihhon,' 'Chizuka,' and 'Komuta') were grown under 0 (P0) and 258 µM P (P8) for 7 and 14 days after transplantation (DAT). Low-P-tolerant cultivars increased root length by 31% and 119%, which was lower than the 62% and 144% increases in sensitive cultivars under P0 compared to P8 at 7 and 14 DAT, respectively. Acid phosphatase activity in low-P-tolerant cultivars exceeded that in sensitive cultivars by 5.2-fold and 2.0-fold at 7 and 14 DAT. Root exudates from each cultivar revealed 177 metabolites, with higher organic acid exudation in low-P-tolerant than sensitive cultivars under P0. Low-P-tolerant cultivars increased concentrations of specific metabolites (oxalate, GABA, quinate, citrate, AMP, 4-pyridoxate, and CMP), distinguishing them from low-P-sensitive cultivars under P0. The top five metabolomic pathways (purine metabolism, arginine and proline metabolism, TCA cycle, glyoxylate and dicarboxylate metabolism, alanine, aspartate, and glutamate metabolism) were more pronounced in low-P-tolerant cultivars at 14 DAT. These findings indicate that increasing root length was not an adaptation strategy under P deficiency; instead, tolerant cultivars exhibit enhanced root physiological traits, including increased acid phosphatase activity, organic acid exudation, specific metabolite release, and accelerated metabolic pathways under P deficiency.


Glycine max , Phosphorus , Phosphorus/metabolism , Plant Roots/metabolism , Exudates and Transudates/metabolism , Acid Phosphatase/metabolism
5.
Environ Res ; 232: 116225, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37247652

Continuous straw returning is widely encouraged for augmenting soil organic carbon (SOC) in arable lands. However, the magnitude of changes in net SOC related to native SOC mineralization and new SOC development upon fresh straw incorporation remains elusive, particularly in soils after continuous straw returning with different strategies. To address this, soil that had undergone nine years of straw returning with different strategies (NS, non-straw returning; DS, direct straw returning; IS, indirect straw returning) was incubated with fresh 13C-labeled straw for 45 days. Fresh straw incorporation stimulated native SOC-derived CO2 emission in DS soil, which in turn promoted straw-derived CO2 emission in IS soil. Overall, the amounts of newly developed SOC from straw (2.41-2.59 g C/kg soil) overcompensated for the native SOC losses (0.91-1.37 g C/kg soil) by mineralization, and led to net C sequestration in all treatments. No obvious difference was found in the amounts of SOC sequestrated from straw between the DS and NS soils, while the amount of native SOC mineralization increased by 40-50% in the DS soil relative to other treatments, thus resulting in lower net C sequestration in the DS soil (1.21 g C/kg soil) than IS and NS soil (1.43 and 1.65 g C/kg for IS and NS soil, respectively). Spearman's correlation analyses indicated a significant (p < 0.01) and positive correlation between SOC contents and native soil C mineralization, while the soil microbial index played a greater role in influencing fresh straw sequestration (p < 0.01). In conclusion, the DS soil showed a weaker effect on SOC sequestration than IS after 9 years of practices, upon fresh straw incorporation. This difference may be attributed to the magnitude of native SOC mineralization in the soil. Besides the straw-C input rate, results emphasize that native soil C protection should be also considered in long-term SOC sequestration practices.


Carbon , Soil , Carbon/metabolism , Agriculture/methods , Carbon Dioxide , Carbon Sequestration
6.
Plants (Basel) ; 12(6)2023 Mar 18.
Article En | MEDLINE | ID: mdl-36987053

Plants have evolved various mechanisms for low P tolerance, one of which is changing their membrane lipid composition by remodeling phospholipids with non-phospholipids. The objective of this study was to investigate the remodeling of membrane lipids among rice cultivars under P deficiency. Rice (Oryza sativa L.) cultivars (Akamai, Kiyonishiki, Akitakomachi, Norin No. 1, Hiyadateine, Koshihikari, and Netaro) were grown in 0 (-P) and 8 (+P) mg P L-1 solution cultures. Shoots and roots were collected 5 and 10 days after transplanting (DAT) in solution culture and subjected to lipidome profiling using liquid chromatography-mass spectrometry. Phosphatidylcholine (PC)34, PC36, phosphatidylethanolamine (PE)34, PE36, phosphatidylglycerol (PG)34, phosphatidylinositol (PI)34 were the major phospholipids and digalactosyldiacylglycerol (DGDG)34, DGDG36, 1,2-diacyl-3-O-alpha-glucuronosylglycerol (GlcADG)34, GlcADG36, monogalactosyldiacylglycerol (MGDG)34, MGDG36, sulfoquinovosyldiacylglycerol (SQDG)34 and SQDG36 were the major non-phospholipids. Phospholipids were lower in the plants that were grown under -P conditions than that in the plants that were grown under +P for all cultivars at 5 and 10 DAT. The levels of non-phospholipids were higher in -P plants than that in +P plants of all cultivars at 5 and 10 DAT. Decomposition of phospholipids in roots at 5 DAT correlated with low P tolerance. These results suggest that rice cultivars remodel membrane lipids under P deficiency, and the ability of remodeling partly contributes to low P tolerance.

7.
Glob Chang Biol ; 28(22): 6711-6727, 2022 11.
Article En | MEDLINE | ID: mdl-35986445

Paddies contain 78% higher organic carbon (C) stocks than adjacent upland soils, and iron (Fe) plaque formation on rice roots is one of the mechanisms that traps C. The process sequence, extent and global relevance of this C stabilization mechanism under oxic/anoxic conditions remains unclear. We quantified and localized the contribution of Fe plaque to organic matter stabilization in a microoxic area (rice rhizosphere) and evaluated roles of this C trap for global C sequestration in paddy soils. Visualization and localization of pH by imaging with planar optodes, enzyme activities by zymography, and root exudation by 14 C imaging, as well as upscale modeling enabled linkage of three groups of rhizosphere processes that are responsible for C stabilization from the micro- (root) to the macro- (ecosystem) levels. The 14 C activity in soil (reflecting stabilization of rhizodeposits) with Fe2+ addition was 1.4-1.5 times higher than that in the control and phosphate addition soils. Perfect co-localization of the hotspots of ß-glucosidase activity (by zymography) with root exudation (14 C) showed that labile C and high enzyme activities were localized within Fe plaques. Fe2+ addition to soil and its microbial oxidation to Fe3+ by radial oxygen release from rice roots increased Fe plaque (Fe3+ ) formation by 1.7-2.5 times. The C amounts trapped by Fe plaque increased by 1.1 times after Fe2+ addition. Therefore, Fe plaque formed from amorphous and complex Fe (oxyhydr)oxides on the root surface act as a "rusty sink" for organic matter. Considering the area of coverage of paddy soils globally, upscaling by model revealed the radial oxygen loss from roots and bacterial Fe oxidation may trap up to 130 Mg C in Fe plaques per rice season. This represents an important annual surplus of new and stable C to the existing C pool under long-term rice cropping.


Cellulases , Oryza , Soil Pollutants , Carbon , Ecosystem , Iron/analysis , Oxides , Oxygen , Phosphates , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
8.
Molecules ; 27(9)2022 Apr 30.
Article En | MEDLINE | ID: mdl-35566221

Compound specific isotope analysis (CSIA) and enantiomer specific isotope analysis (ESIA) are powerful tools for assessing the fate of hexachlorocyclohexanes (HCHs) in the environment. However, there is no systematic study on the CSIA and ESIA analysis test methods of the carbon isotopes of HCHs in water and soil environments, in particular the isotope fractionation in the pre-concentration process. We endeavored to test the compatibility of CSIA and ESIA with the liquid-liquid extraction method of HCHs in water. The results showed that there were negligible changes in the δ13C of HCHs after extraction, indicating that liquid-liquid extraction can be used as a pre-concentration method for the determination of δ13C of HCHs in water. The optimized method was validated and then applied to differentiate three HCHs from different manufacturers, to identify in situ degradation of HCHs of groundwater from a contaminated site and to resolve the carbon isotope fractionation occurring in the α-HCH oxidation by CaO2/Fe(II) Fenton system. The results showed that the same reagents from different manufacturers have different carbon isotope compositions, and different isomers from the same manufacturer also have different isotope compositions, showing useful evidence in identifying the source of HCHs. The more enriched δ13C in the down-gradient wells indicated that HCHs have undergone biodegradation or/and chemical reactions in the groundwater system of the site. Carbon isotopic enrichment factors (εC) of -1.90 ± 0.10‱ were obtained in the oxidation process. Hence, the method validated in this study has great potential as a method for identifying the degradation of HCHs in a water environment.


Carbon , Hexachlorocyclohexane , Biodegradation, Environmental , Carbon/analysis , Carbon Isotopes/analysis , Gas Chromatography-Mass Spectrometry/methods , Hexachlorocyclohexane/analysis , Hexachlorocyclohexane/chemistry , Hexachlorocyclohexane/metabolism , Liquid-Liquid Extraction , Water/analysis
9.
Sci Total Environ ; 802: 149870, 2022 Jan 01.
Article En | MEDLINE | ID: mdl-34525703

Climate warming is expected to cause greater increases in nocturnal temperatures than daytime temperatures, thereby altering freeze-thaw cycles. Although the importance of freeze-thaw cycles in regulating soil aggregate stability and nutrient availability has attracted increasing attention, little is known about how winter nocturnal warming modulates freeze-thaw frequency, soil aggregate distribution, or the contents and mineralization of soil organic carbon (SOC) and total nitrogen (TN) in paddy fields. The nocturnal soil temperature in the upper 0-2 cm layer in a paddy field was elevated by approximately 2 °C using a passive nocturnal warming method during winter. An anaerobic experiment with a first-order reaction model was conducted to measure the C decomposition (C0) and N mineralization (N0) potentials in bulk soil and four soil aggregate fractions. Winter nocturnal warming significantly decreased freeze-thaw frequency and affected soil aggregate distribution and SOC and TN contents in <0.25 mm aggregate. Both SOC and TN fractions were significantly increased in the 0.25-1 mm aggregate but decreased in the >2 mm aggregate due to winter nocturnal warming. Winter nocturnal warming did not affect C0, N0, C0/SOC, and N0/TN in bulk soil. However, it decreased C0 and C0/SOC in all aggregates except the 0.25-1 mm aggregate, and increased N0 and N0/TN in all aggregates except the >2 mm aggregate. In the nocturnal warming treatment, the highest C0 and N0 values were found in the <0.25 mm aggregate, but only the N0 in the <0.25 mm aggregate was significantly larger than that in the other three soil aggregates. Our study indicated that winter nocturnal warming would reduce the freeze-thaw frequency and change C and N distributions in soil aggregates, resulting in increased soil N availability in the subsequent rice growth season.


Carbon , Soil , Freezing , Nitrogen/analysis , Seasons
10.
Environ Pollut ; 291: 118154, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34537599

Global meta-analyses showed that biochar application can reduce N2O emission. However, no relevant review study is available for East Asian countries which are responsible for 70% of gaseous N losses from croplands globally. This review analyzed data of the biochar-induced N2O mitigation affected by experimental conditions, including experimental types, biochar types and application rates, soil properties, and chemical forms and application rates of N fertilizer for East Asian countries. The magnitude of biochar-induced N2O mitigation was evaluated by calculating N2O reduction index (Rindex, percentage reduction of N2O by biochar relative to control). The Rindex was further standardized against biochar application rate by calculating Rindex per unit of biochar application rate (ton ha-1) (Unit Rindex). The Rindex averaged across different experimental types (n = 196) was -21.1 ± 2.4%. Incubation and pot experiments showed greater Rindex than column and field experiments due to higher biochar application rate and shorter experiment duration. Feedstock type and pyrolysis temperature also affected Rindex; either bamboo feedstock or pyrolysis at > 400 °C resulted in a greater Rindex. The magnitude of Rindex also increased with increasing biochar rate. Soil properties did not affect Rindex when evaluated across all experimental types, but there was an indication that biochar decreased N2O emission more at a lower soil moisture level in field experiments. The magnitude of Rindex increased with increasing N fertilizer rate up to 500-600 kg N ha-1, but it decreased thereafter. The Unit Rindex averaged across experimental types was -1.2 ± 0.9%, and it was rarely affected by experimental type and conditions but diminished with increasing biochar rate. Our results highlight that since N2O mitigation by biochar is affected by biochar application rate, Rindex needs to be carefully evaluated by standardizing against biochar application rate to suggest the best conditions for biochar usage in East Asia.


Nitrous Oxide , Soil , Charcoal , Data Analysis , Nitrous Oxide/analysis
11.
Arch Microbiol ; 203(9): 5599-5611, 2021 Nov.
Article En | MEDLINE | ID: mdl-34455446

Plants release various metabolites from roots and root exudates contribute to differences in stress tolerance among plant species. Plant and soil microbes have complex interactions that are affected by biotic and abiotic factors. The purpose of this study was to examine the differences in metabolites in root exudates of rice (Oryza sativa) cultivars and their correlation with bacterial populations in the rhizosphere. Two rice cultivars (O. sativa cv. Akamai and O. sativa cv. Koshihikari) were grown in soils fertilized with 0 g P kg-1 (- P) or 4.8 g P kg-1 (+ P). Root exudates and root-attached soil were collected at 13 and 20 days after transplanting (DAT) and their metabolites and bacterial community structure were determined. The exudation of proline, serine, threonine, valine and 4-coumarate were increased under low P conditions in both cultivars. There was a positive correlation between the concentration of pantothenate in root exudates and the representation of members of the genera Clostridium and Sporosarcina, which were negatively correlated with root dry weight. Gracilibacter, Opitutus, Pelotomaculum, Phenylobacterium and Oxobacter were positively correlated with root dry weight and presence of allantoin, 2-aminobtyrate and GlcNac. This study provides new information about the response of plants and rhizosphere soil bacteria to low P conditions.


Microbiota , Oryza , Exudates and Transudates , Plant Roots , Rhizosphere , Soil
12.
Environ Monit Assess ; 193(Suppl 1): 273, 2021 May 14.
Article En | MEDLINE | ID: mdl-33988816

Organic farming was developed to reduce agriculture's negative impacts on the environment and enhance biodiversity for sustainable productivity in agricultural ecosystems, but the long-term effectiveness of its application in Japanese rice paddies is unclear. We sought to understand how long-term organic farming affects the abundance of animals in both the rice growth and fallow seasons, and how soil properties change. We investigated the abundance of fishes, frogs, beetles, and shellfish in the floodwater in summer, and the abundance of earthworms (mainly Enchytraeidae), arthropods (spiders and springtails), and soil properties in aerobic soils in autumn. We examined fields which had been farmed organically for 10 and 18 years in Tochigi, Japan. Fields farmed with conventional management, located close to the selected organic fields, were used as a control. All selected fields were located in a valley, which is the typical landscape of a traditional Japanese farming village, called a yatsuda in Japanese. The results showed an increase in soil organic carbon, total nitrogen, and available phosphorus in plowed soils that had been converted from conventional to organic farming both 10 and 18 years earlier. However, the abundance of various animals were not affected significantly by long-term organic rice farming, other than arthropods in the aerobic soils that had been farmed organically for 18 years. The quantity of most animals in floodwater and fallow season soil was unaffected by long-term organic rice farming in the yatsuda paddy fields, probably due to the circumstances and similar irrigation systems for both conventional and organic rice farming, as well as lighter doses of agrochemical application for conventional rice cultivation.


Oryza , Soil , Agriculture , Animals , Carbon/analysis , Ecosystem , Environmental Monitoring , Japan , Organic Agriculture
13.
Arch Microbiol ; 203(5): 2411-2418, 2021 Jul.
Article En | MEDLINE | ID: mdl-33661315

Endophytic fungi (EPF) colonize plant roots and enhance their growth. The relationship between host plant and EPF can be affected by several factors, such as growth media, host species, and fungal species. The objective of this study was to clarify the effect of nutrient concentration in growth media on the relationship between host plant and root EPF. Brassica campestris was grown in 1/100 Murashige and Skoog (MS), 1/10 MS, 1/100 MS and 1/10 nitrogen (high N), and 1/100 MS and 1/10 phosphorus (high P) media. B. campestris was inoculated with four root EPFs isolated from forest soils in Indonesia and harvested 28 days after transplant. Shoot dry weight (SDW) and colonization in roots were measured. All the isolates colonized roots of B. campestris. Two isolates increased the SDW of B. campestris grown on 1/100 MS media. The shoot growth response of B. campestris to EPF colonization on 1/100 MS was higher than that on 1/100 high N and 1/100 high P MS media. These results suggest that concentration of nitrogen and phosphorus in growth media determine the relationship between B. campestris and root EPF.


Brassica/growth & development , Endophytes/physiology , Fungi/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Host Microbial Interactions , Plant Roots/microbiology , Soil , Soil Microbiology
14.
Phys Chem Chem Phys ; 23(3): 2005-2014, 2021 Jan 28.
Article En | MEDLINE | ID: mdl-33443524

The development of metal-free, high effective and recyclable catalysts plays a pivotal role in transforming CO2 into high value-added products such as cyclic carbonates. In this paper, we introduced the hydrogen bond donor (HBD) groups into poly(ionic liquid)s via free radical polymerization, which successfully combined the HBD and ionic liquids (ILs) into one heterogeneous catalyst. The HBD could synergistically activate epoxides with hydroxyl functionalized ionic liquids and efficiently catalyze the cycloaddition of CO2 into cyclic carbonates. The yield of propylene carbonate (PC) reached 94% (at 105 °C, 2 MPa CO2, 3 h), which far exceeded poly(ionic liquid)s without HBDs functionalization (PC yield 72%), and even approached bulk ionic liquids (PC yield 95%). Moreover, HBD-functionalized poly(ionic liquid)s (HPILs) exhibited excellent recyclability after five runs and afforded wide substrate scope. According to the experimental results, 1H NMR spectra and density functional theory (DFT) calculations showed 2-hydroxyethyl methacrylate (HEMA) and the hydroxyl of ILs would form strong H-bonds with epoxides contributing to the ring-opening process of epoxides, and a possible HBD and nucleophilic anion synergistically catalytic mechanism was proposed. The method herein paved a brand new way for green technology and utilization of poly(ionic liquid)s.

15.
J Natl Med Assoc ; 113(3): 255-259, 2021 Jun.
Article En | MEDLINE | ID: mdl-33478800

Multiple Myeloma (MM) is a neoplastic disorder derived from the malignant proliferation of monoclonal plasma cells. It is characterized by the overproduction of immunoglobulins (Ig). We report a rare case in which bulbar palsy was the initial manifestation of IgG-MM. A 66-year-old woman initially presented with progressive dysphagia and dysarthria for half a year. Physical examination demonstrated a deviation of the uvula, difficulty in protruding tongue, and bilateral tongue atrophy. Laboratory assessments revealed anemia and prominent monoclonal elevation of IgG levels both in serum and cerebrospinal fluid (CSF). The diagnosis of IgG-MM was confirmed by the identification of plasmacytosis in bone marrow aspiration and biopsy and elevation of γ-M protein in serum protein electrophoresis (SPEP). Therefore, the patient began to receive the chemotherapy with PAD (bortezomib-doxorubicin-dexamethasone) regimen. Her condition had been under control. MM as a hematological malignancy can affect cranial nerves and present as chronic progressive bulbar palsy.


Anemia , Bulbar Palsy, Progressive , Multiple Myeloma , Aged , Biopsy , Female , Humans , Multiple Myeloma/complications , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy
16.
Sci Total Environ ; 756: 143845, 2021 Feb 20.
Article En | MEDLINE | ID: mdl-33277011

Soil temperature is an important determinant of carbon (C) and nitrogen (N) cycling in terrestrial ecosystems, but its effects on soil organic carbon (SOC) and total nitrogen (TN) dynamics as well as rice biomass in rice paddy ecosystems are not fully understood. We conducted a five-year soil warming experiment in a single-cropping paddy field in Japan. Soil temperatures were elevated by approximate 2 °C with heating wires during the rice growing season and by approximate 1 °C with nighttime thermal blankets during the fallow season. Soil samples were collected in autumn after rice harvest and in spring after fallow each year, and anaerobically incubated at 30 °C for four weeks to determine soil C decomposition and N mineralization potentials. The SOC and TN contents, rice biomass, dissolved organic carbon (DOC) and microbial biomass carbon (MBC) concentrations were measured in the study. Soil warming did not significantly enhance rice aboveground and root biomasses, but it significantly decreased SOC and TN contents and thus decreased soil C decomposition and N mineralization potentials due to depletion of available C and N. Moreover, soil warming significantly decreased DOC concentration but significantly increased MBC concentration. The ratios of C decomposition potential to N mineralization potential, decomposition potential to SOC, and N mineralization to TN were not affected by soil warming. There were significant seasonal and annual variations in SOC, C decomposition and N mineralization potentials, soil DOC and MBC under each temperature treatments. Our study implied that soil warming can decrease soil C and N stocks in paddy ecosystem probably via stimulating microbial activities and accelerating the depletion of DOC. This study further highlights the importance of long-term in situ observation of C and N dynamics and their availabilities in rice paddy ecosystems under increasing global warming scenarios.


Oryza , Soil , Carbon/analysis , Ecosystem , Japan , Soil Microbiology
17.
Heliyon ; 6(9): e05042, 2020 Sep.
Article En | MEDLINE | ID: mdl-33015391

Poultry-litter biochar and Azolla as green manure amendments are reported to enhance paddy soil fertility and rice yields. However, whether their co-application in lowland rice paddies has synergistic effects and whether those benefits are accompanied by greenhouse gas (GHG) emissions remains unknown. The objective of this study was to determine the effects of poultry-litter biochar (hereafter: biochar) and its co-application with Azolla as green manure (hereafter: Azolla), on the simultaneous methane (CH4) and nitrous oxide (N2O) emissions from a lowland paddy soil planted with rice during a single rice growing season in Tsuruoka, Yamagata, Japan. Biochar and Azolla amendments were applied once before rice was transplanted at a density of 20 t ha-1 and 133.9 kg N ha-1, respectively. Compared with NPK, NPK + biochar, and Azolla only treatments, Azolla and biochar co-application (i.e., Azolla + biochar) significantly increased CH4 emissions by 33%-197.6% in the early stages of rice growth (before 63 days after transplanting, DAT), but did not significantly influence CH4 emissions at both late rice growth stages (after 63 DAT,) and whole rice growth period (112 DAT). Conversely, Azolla + biochar significantly reduced N2O emissions by 83.0%-97.1% before 63 DAT, and by 76.4%-95.9% during the whole rice growth period at 112 DAT, with a significantly high interaction between biochar and fertilizer amendments. There were no significant N2O emission differences among all treatments after 63 DAT. Additionally, Azolla + biochar significantly increased rice grain yield by 27.3%-75.0%, and consequently, decreased both yield-equivalent CH4 emissions by 24.7%-25.0% and N2O emissions by 81.8%-97.7%. Our findings suggest that the co-application of poultry-litter biochar and Azolla as green manure offers a novel approach to increase rice yield while reducing the emissions of non-carbon dioxide greenhouse gases.

18.
Mycorrhiza ; 29(6): 599-605, 2019 Nov.
Article En | MEDLINE | ID: mdl-31745622

Arbuscular mycorrhizal (AM) fungi increase phosphate (P) uptake by plants. Organic phosphate comprises 30-80% of total P in most agricultural soils. Some plants can utilize organic phosphate by secreting acid phosphatase (ACP) from their roots, especially under low P conditions. Although secretion of ACP from extraradical hyphae of AM fungi has been reported, the specific factors that affect the secretion of ACP are unknown. The objective of the present study was to investigate whether secretion of ACP from extraradical hyphae is induced by low P conditions. First, specimens of Allium fistulosum were either inoculated with the AM fungus Rhizophagus clarus strain CK001 or remained uninoculated and were grown in soil with 0.5 g P2O5 kg-1 soil or without P fertilization using two-compartment pots. Soil solution was collected using mullite ceramic tubes 45 days after sowing. The soil solution was analyzed for ACP activity by using p-nitrophenylphosphate. Second, Ri T-DNA transformed roots (i.e., hairy roots) of Linum usitatissimum inoculated with R. clarus were grown on solid minimal media with two P levels applied (3 and 30 µM P) using two-compartment Petri dishes under in vitro conditions. Hyphal exudates, extraradical hyphae, and hairy roots were collected and analyzed for ACP activity. ACP activity in the soil solution of the hyphal compartment in the A. fistulosum inoculation treatment was higher without P fertilization than with P fertilization. AM colonization also was higher without P fertilization than with P fertilization. In the in vitro two-compartment culture, ACP activity of hyphal exudates and extraradical hyphae were higher under the 3-µM treatment than under the 30-µM treatment. These findings suggest that the secretion of ACP from the extraradical hyphae of R. clarus into the hyphosphere is promoted under low P conditions.


Mycorrhizae , Acid Phosphatase , Hyphae , Organophosphates , Phosphates , Plant Roots
19.
ChemSusChem ; 12(6): 1169-1178, 2019 Mar 21.
Article En | MEDLINE | ID: mdl-30618199

Green synthesis of high-molecular-weight isosorbide-based polycarbonate (PIC) with excellent properties is a tremendous challenge and is profoundly influenced by the precursor. Herein, an ecofriendly catalyst was employed to obtain the more reactive PIC precursor dicarboxymethyl isosorbide (DC) with 99.0 % selectivity through the transesterification reaction of isosorbide with dimethyl carbonate. This is the indispensable stage of a one-pot green synthesis of PIC, playing a critical role in giving an insight into the polymerization mechanism of polymer synthesis through the melt transesterification reaction. To this end, a series of 4-substituted phenolate ionic liquids (ILs) were developed as a new type of high-efficiency catalyst for this reaction. These homogeneous ILs exhibited outstanding catalytic performances. The DC selectivity increased gradually with decreasing IL basicity; among the ILs studied, trihexyl(tetradecyl)phosphonium 4-iodophenolate ([P66614 ][4-I-Phen]) showed the highest catalytic activity. Additionally, according to the experimental results and DFT calculations, a plausible nucleophilic activation mechanism was proposed, which confirmed that the reaction is activated through the formation of H-bonds and electrostatic interactions with the IL catalyst. This strategy of tunable basicity and structure of anions in ILs affords an opportunity to develop other ILs for the transesterification reaction, thereby conveniently providing a variety of polymers through a green synthetic pathway.

20.
Physiol Plant ; 2018 Feb 07.
Article En | MEDLINE | ID: mdl-29412473

Recycling of phosphorus (P) from P-containing metabolites is an adaptive strategy of plants to overcome soil P deficiency. This study was aimed at demonstrating differences in lipid remodelling between low-P-tolerant and -sensitive rice cultivars using lipidome profiling. The rice cultivars Akamai (low-P-tolerant) and Koshihikari (low-P-sensitive) were grown in a culture solution with [2 mg l-1 (+P)] or without (-P) phosphate for 21 and 28 days after transplantation. Upper and lower leaves were collected. Lipids were extracted from the leaves and their composition was analysed by liquid chromatography/mass spectrometry (LC-MS). Phospholipids, namely phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and phosphatidylinositol (PI), lysophosphatidylcholine (lysoPC), diacylglycerol (DAG), triacylglycerol (TAG) and glycolipids, namely sulfoquinovosyl diacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG) and 1,2-diacyl-3-O-alpha-glucuronosyl glycerol (GlcADG), were detected. GlcADG level was higher in both cultivars grown in -P than in +P and the increase was larger in Akamai than in Koshihikari. DGDG, MGDG and SQDG levels were higher in Akamai grown in -P than in +P and the increase was larger in the upper leaves than in the lower leaves. PC, PE, PG and PI levels were lower in both cultivars grown in -P than in +P and the decrease was larger in the lower leaves than in the upper leaves and in Akamai than in Koshihikari. Akamai catabolised more phospholipids in older leaves and synthesised glycolipids in younger leaves. These results suggested that extensive phospholipid replacement with non-phosphorus glycolipids is a mechanism underlying low-P-tolerance in rice cultivars.

...