Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Psychiatry ; 15: 1405107, 2024.
Article En | MEDLINE | ID: mdl-38846919

Background: Previous studies have highlighted the association between schizophrenia (SCZ) and chronic obstructive pulmonary disease (COPD), yet the causal relationship remains unestablished. Methods: Under the genome-wide significance threshold (P<5×10-8), data from individuals of European (EUR) and East Asian (EAS) ancestries with SCZ were selected for analysis. Univariable Mendelian randomization (MR) explored the causal relationship between SCZ and COPD. Linkage disequilibrium score (LDSC) regression was used to calculate genetic correlation, while multivariable and mediation MR further investigated the roles of six confounding factors and their mediating effects. The primary method utilized was inverse-variance weighted (IVW), complemented by a series of sensitivity analyses and false discovery rate (FDR) correction. Results: LDSC analysis revealed a significant genetic correlation between SCZ and COPD within EUR ancestry (rg = 0.141, P = 6.16×10-7), with no such correlation found in EAS ancestry. IVW indicated a significant causal relationship between SCZ and COPD in EUR ancestry (OR = 1.042, 95% CI 1.013-1.071, P = 0.003, PFDR = 0.015). Additionally, replication datasets provide evidence of consistent causal associations(P < 0.05 & PFDR < 0.05). Multivariable and mediation MR analyses identified body mass index (BMI)(Mediation effect: 50.57%, P = 0.02), age of smoking initiation (Mediation effect: 27.42%, P = 0.02), and major depressive disorder (MDD) (Mediation effect: 60.45%, P = 6.98×10-5) as partial mediators of this causal relationship. No causal associations were observed in EAS (OR = 0.971, 95% CI 0.875-1.073, P = 0.571, PFDR = 0.761) ancestry. No causal associations were found in the reverse analysis across the four ancestries (P > 0.05 & PFDR > 0.05). Conclusions: This study confirmed a causal relationship between SCZ and the risk of COPD in EUR ancestry, with BMI, smoking, and MDD serving as key mediators. Future research on a larger scale is necessary to validate the generalizability of these findings across other ancestries.

2.
Pharmacol Ther ; 209: 107497, 2020 05.
Article En | MEDLINE | ID: mdl-32004513

Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.


Drug Discovery/trends , Molecular Probes/chemistry , Molecular Probes/physiology , TRPC Cation Channels/chemistry , TRPC Cation Channels/physiology , Animals , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Phosphoinositide Phospholipase C/chemistry , Phosphoinositide Phospholipase C/physiology , Protein Structure, Secondary , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/physiology
3.
Chem Sci ; 12(5): 1843-1850, 2020 Nov 27.
Article En | MEDLINE | ID: mdl-34163948

Small-molecule subcellular organelle-targeting theranostic probes are crucial for early disease diagnosis and treatment. The imaging window of these molecules is mainly focused on the visible and near-infrared region (below ∼900 nm) which limits the tissue penetration depth and therapeutic effects. Herein, a novel NIR-II small-molecule probe H4-PEG-Glu with a thiopyrylium cation was synthesized. H4-PEG-Glu not only can quickly and effectively image mitochondria in acute myeloid leukemia (AML) cells, and induce G0/G1 phase arrest by the intrinsic mitochondrial apoptosis pathway w/o irradiation, but also exhibit moderate cytotoxicity against AML cancer cells in a dose dependent-manner without laser irradiation. The THP-1 cells treated with H4-PEG-Glu upon NIR laser irradiation showed enhanced chemo- and photothermal therapy (CPTT) with 93.07% ± 6.43 apoptosis by Annexin V staining. Meanwhile, H4-PEG-Glu displayed high synergistic CPTT effects in vivo, as well as specific NIR-II tumor imaging in AML patient derived PDX mouse models for the first time. Our work lays down a solid foundation for designing small-molecule NIR-II mitochondria-selective theranostic probes.

4.
Adv Healthc Mater ; 9(1): e1901224, 2020 01.
Article En | MEDLINE | ID: mdl-31793757

Osteosarcoma is an aggressive tumor of mesenchymal origin that is more likely to spread to the lung than others, with a major impact on patients' prognosis. The optimal imaging method that can reliably detect or exclude pulmonary metastases from osteosarcoma is still scarce. Herein, two homologous types of fluorescent probes CH1055-PEG-PT and CH1055-PEG-Affibody, which show highly promising results for targeting imaging of osteosarcoma and its lung metastasis, respectively, are designed and synthesized. It is found that the NIR-II imaging quality of CH1055-PEG-PT is far superior to that of computed tomography for the early in vivo 143B tumor imaging, and this probe-guided surgery for accurate resection of 143B tumor is further performed. The high-resolution visualization of primary and micrometastatic lung lesions of osteosarcoma by using CH1055-PEG-Affibody is also demonstrated. Therefore, the attractive imaging properties of CH1055-PEG-PT and CH1055-PEG-Affibody, including high levels of uptakes, and high spatial and temporal resolution, open up opportunities for molecular imaging and clinical translation of osteosarcoma and its lung metastasis in the unique second near-infrared window.


Bone Neoplasms/diagnostic imaging , Fluorescent Dyes/chemistry , Lung Neoplasms/diagnostic imaging , Optical Imaging/methods , Osteosarcoma/diagnostic imaging , Animals , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Female , Fluorescent Dyes/metabolism , Fluorescent Dyes/pharmacology , Humans , Lung Neoplasms/secondary , Mice , Mice, Nude , Osteosarcoma/pathology , Phenylpropionates/chemistry , Polyethylene Glycols/chemistry , Recombinant Fusion Proteins/chemistry , Spectroscopy, Near-Infrared , Thiadiazoles/chemistry , Tissue Distribution , Xenograft Model Antitumor Assays
...