Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 177, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016286

RESUMEN

BACKGROUND: Primary trisomy is a powerful genetic tool in plants. However, trisomy has not been detected in Populus as a model system for tree and woody perennial plant biology. RESULTS: In the present study, a backcross between Populus alba × Populus glandulosa 'YXY 7#' (2n = 2x = 38) and the triploid hybrid 'Beilinxiongzhu 1#' (2n = 3x = 57) based on the observation of microsporogenesis and an evaluation of the variations in pollen was conducted to create primary trisomy. Many abnormalities, such as premature migration of chromosomes, lagging of chromosomes, chromosome bridges, asymmetric separation, micronuclei, and premature cytokinesis, have been detected during meiosis of the triploid hybrid clone 'Beilinxiongzhu 1#'. However, these abnormal behaviors did not result in completely aborted pollen. The pollen diameter of the triploid hybrid clone 'Beilinxiongzhu 1#' is bimodally distributed, which was similar to the chromosomal number of the backcross progeny. A total of 393 progeny were generated. We provide a protocol for determining the number of chromosomes in aneuploid progeny, and 19 distinct simple sequence repeat (SSR) primer pairs covering the entire Populus genome were developed. Primary trisomy 11 and trisomy 17 were detected in the 2x × 3 x hybrid using the SSR molecular markers and counting of somatic chromosomes. CONCLUSIONS: Nineteen distinct SSR primer pairs for determining chromosomal number in aneuploid individuals were developed, and two Populus trisomies were detected from 2x × 3 x hybrids by SSR markers and somatic chromosome counting. Our findings provide a powerful genetic tool to reveal the function of genes in Populus.


Asunto(s)
Populus , Triploidía , Trisomía , Populus/genética , Gametogénesis en la Planta/genética , Cruzamientos Genéticos , Aneuploidia , Plantas/genética
2.
Plant Physiol ; 189(4): 2110-2127, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35567496

RESUMEN

The formation of diploid gametes through chromosome doubling is a major mechanism of polyploidization, diversification, and speciation in plants. Unfavorable climate conditions can induce or stimulate the production of diploid gametes during meiosis. Here, we demonstrated that heat shock stress (38°C for 3 or 6 h) induced 2n pollen formation, and we generated 42 triploids derived from heat shock-induced 2n pollen of Populus canescens. Meiotic analysis of treated pollen mother cells revealed that induced 2n pollen originated from the complete loss of meiosis II (MII). Among the 42 triploids, 38 triploids derived from second division restitution (SDR)-type 2n pollen and 4 triploids derived from first division restitution-type 2n pollen were verified using simple sequence repeats (SSR) molecular markers. Twenty-two differentially expressed genes related to the cell cycle were identified and characterized by expression profile analysis. Among them was POPTR_0002s08020g (PtCYCA1;2), which encodes a type A Cyclin CYCA1;2 that is required for the meiosis I (MI) to MII transition. After male flower buds were exposed to heat shock, a significant reduction was detected in PtCYCA1;2 expression. We inferred that the failure of MI-to-MII transitions might be associated with downregulated expression of PtCYCA1;2, leading to the formation of SDR-type 2n pollen. Our findings provide insights into mechanisms of heat shock-induced 2n pollen formation in a woody plant and verify that sensitivity to environmental stress has evolutionary importance in terms of polyploidization.


Asunto(s)
Meiosis , Triploidía , Diploidia , Respuesta al Choque Térmico/genética , Meiosis/genética , Polen/genética
3.
BMC Plant Biol ; 22(1): 176, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387617

RESUMEN

BACKGROUND: Autopolyploids, especially artificial lines, provide model systems for understanding the mechanisms of gene dosage effects on trait variation owing to their relatively uniform genetic background. Here, a protocol for in vitro octaploid induction of Populus hopeiensis from leaf blades with colchicine treatment was established through investigation of the effects of different pre-culture durations, colchicine concentrations, and exposure times. RESULTS: We found that pre-culture duration, colchicine concentration, and exposure time had significant effects on the survival rate, shoot regeneration rate, and octaploid induction rate of P. hopeiensis leaf blades. The highest octaploid induction rate (8.61%) was observed when leaf blades pre-cultured for 9 days were treated for 4 days with 100 µM colchicine. The ploidy level of all regenerated plantlets was analyzed by flow cytometry and further confirmed by chromosome counting. A total of 14 octaploids were obtained. The stomatal length, width, and density of leaf blades significantly differed between tetraploid and octaploid plants. Compared with diploid and tetraploid plants, octaploids had a slower growth rate, smaller leaf blade size, and shorter internodes. CONCLUSIONS: We established an effective protocol for inducing octaploids in vitro from autotetraploid P. hopeiensis leaf blades by colchicine treatment.


Asunto(s)
Populus , Colchicina/farmacología , Diploidia , Hojas de la Planta/genética , Populus/genética , Tetraploidía
4.
Front Plant Sci ; 13: 1110027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714757

RESUMEN

The plant hormone gibberellin (GA) regulates many physiological processes, such as cell differentiation, cell elongation, seed germination, and the response to abiotic stress. Here, we found that injecting male flower buds with exogenous gibberellic acid (GA3) caused defects in meiotic cytokinesis by interfering with radial microtubule array formation resulting in meiotic restitution and 2n pollen production in Populus. A protocol for inducing 2n pollen in Populus with GA3 was established by investigating the effects of the dominant meiotic stage, GA3 concentration, and injection time. The dominant meiotic stage (F = 41.882, P < 0.001) and GA3 injection time (F = 172.466, P < 0.001) had significant effects on the frequency of induced 2n pollen. However, the GA3 concentration (F = 1.391, P = 0.253) did not have a significant effect on the frequency of induced 2n pollen. The highest frequency of GA3-induced 2n pollen (21.37%) was observed when the dominant meiotic stage of the pollen mother cells was prophase II and seven injections of 10 µM GA3 were given. Eighteen triploids were generated from GA3-induced 2n pollen. Thus, GA3 can be exploited as a novel mutagen to induce flowering plants to generate diploid male gametes. Our findings provide some new insight into the function of GAs in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...