Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2404272, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953411

RESUMEN

The phenomenon of flexoelectricity, wherein mechanical deformation induces alterations in the electron configuration of metal oxides, has emerged as a promising avenue for regulating electron transport. Leveraging this mechanism, stress sensing can be optimized through precise modulation of electron transport. In this study, the electron transport in 2D ultra-smooth In2O3 crystals is modulated via flexoelectricity. By subjecting cubic In2O3 (c-In2O3) crystals to significant strain gradients using an atomic force microscope (AFM) tip, the crystal symmetry is broken, resulting in the separation of positive and negative charge centers. Upon applying nano-scale stress up to 100 nN, the output voltage and power values reach their maximum, e.g. 2.2 mV and 0.2 pW, respectively. The flexoelectric coefficient and flexocoupling coefficient of c-In2O3 are determined as ≈0.49 nC m-1 and 0.4 V, respectively. More importantly, the sensitivity of the nano-stress sensor upon c-In2O3 flexoelectric effect reaches 20 nN, which is four to six orders smaller than that fabricated with other low dimensional materials based on the piezoresistive, capacitive, and piezoelectric effect. Such a deformation-induced polarization modulates the band structure of c-In2O3, significantly reducing the Schottky barrier height (SBH), thereby regulating its electron transport. This finding highlights the potential of flexoelectricity in enabling high-performance nano-stress sensing through precise control of electron transport.

2.
J Hazard Mater ; 451: 131184, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933506

RESUMEN

The adverse effects of NO2 on the environment and human health promote the development of high-performance gas sensors to address the need for monitoring. Two-dimensional (2D) metal chalcogenides have been considered an emerging group of NO2-sensitive materials, while incomplete recovery and low long-term stability are the two major hurdles for their practical implementation. The transformation into oxychalcogenides is an effective strategy to alleviate these drawbacks, but usually requires multiple-step synthesis and lacks controllability. Here, we prepare tailorable 2D p-type gallium oxyselenide with the thicknesses of 3-4 nm, through a single-step mechanochemical synthesis that combines the in-situ exfoliation and oxidation of bulk crystals. The optoelectronic NO2 sensing performances of such 2D gallium oxyselenide with different oxygen contents are investigated at room temperature, in which 2D GaSe0.58O0.42 exhibits the largest response magnitude of 82.2% towards 10 ppm NO2 at the irradiation of UV, with full reversibility, excellent selectivity, and long term stability for at least one month. Such overall performances are significantly improved over those of reported oxygen-incorporated metal chalcogenide-based NO2 sensors. This work provides a feasible approach to prepare 2D metal oxychalcogenides in a single-step manner and demonstrates their great potential for room-temperature fully reversible gas sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA