Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 89(12): 9063-9067, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38847523

RESUMEN

The first organocatalyzed enantioselective [1,2]-Stevens rearrangement is reported. 4-Alkylideneproline derivatives are produced in up to 86% yield and in up to 90:10 er, with recrystallization enhancing er up to >99.5:0.5. Product configuration was opposite that predicted by existing stereochemical models for this organocatalyst class, and DFT calculations revealed a novel mode of asymmetric induction. The adaptability of this catalytic strategy for asymmetric [1,2]-Stevens rearrangements of other heterocyclic amines was demonstrated.

2.
J Org Chem ; 89(9): 5927-5940, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38651750

RESUMEN

A key factor in the development of selective nucleophilic addition to allenamides is controlling the reactivity of electrophilic intermediates, which is generally achieved using an electrophilic activator via conjugated iminium intermediates. In this combined experimental and computational study, we show that a general and highly chemoselective hydroamination of allenamides can be accomplished using a combination of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and NaOAc. Experimental mechanistic studies revealed that HFIP mediates proton transfer to activate the allenamide, while the acetate additive significantly contributes to N-selective interception. This strategy enables a general hydroamination of allenamides without the use of metals. We demonstrated that various functionalized 1,3-diamines could be readily synthesized and diversified into value-added structural motifs. Detailed mechanistic investigations using the density functional theory revealed the role of NaOAc in the formation of reactive electrophilic intermediates, which ultimately governed the selective formation of 1,3-diamine products. Critically, calculations of the potential energy surface around the proton-transfer transition state revealed that two different reactive electrophilic intermediates were formed when NaOAc was added.

3.
Nat Commun ; 15(1): 1459, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368421

RESUMEN

Here, four MOFs, namely Sc-TBAPy, Al-TBAPy, Y-TBAPy, and Fe-TBAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoic acid)pyrene), were characterized and evaluated for their ability to remediate glyphosate (GP) from water. Among these materials, Sc-TBAPy demonstrates superior performance in both the adsorption and degradation of GP. Upon light irradiation for 5 min, Sc-TBAPy completely degrades 100% of GP in a 1.5 mM aqueous solution. Femtosecond transient absorption spectroscopy reveals that Sc-TBAPy exhibits enhanced charge transfer character compared to the other MOFs, as well as suppressed formation of emissive excimers that could impede photocatalysis. This finding was further supported by hydrogen evolution half-reaction (HER) experiments, which demonstrated Sc-TBAPy's superior catalytic activity for water splitting. In addition to its faster adsorption and more efficient photodegradation of GP, Sc-TBAPy also followed a selective pathway towards the oxidation of GP, avoiding the formation of toxic aminomethylphosphonic acid observed with the other M3+-TBAPy MOFs. To investigate the selectivity observed with Sc-TBAPy, electron spin resonance, depleted oxygen conditions, and solvent exchange with D2O were employed to elucidate the role of different reactive oxygen species on GP photodegradation. The findings indicate that singlet oxygen (1O2) plays a critical role in the selective photodegradation pathway achieved by Sc-TBAPy.

4.
Org Lett ; 26(1): 198-203, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38153405

RESUMEN

A practical method for C(sp3)-B bond activation was developed. Using a combination of alkyl trifluoroborates and N-iodosuccinimide (NIS), various C(sp3)-heteroatom bonds were readily generated in an efficient manner. Mechanistic studies revealed the bifunctional ability of NIS: mediating the formation of reactive halogenated intermediates and activating them via halogen bonding. This electrophilic activation of the reaction center enables the utilization of general heteroatom nucleophiles, which are used in a limited capacity in traditional 1,2-metalate rearrangements.

5.
J Org Chem ; 88(24): 16898-16905, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37993265

RESUMEN

Rates of isothiourea catalyzed silylation and acylation reactions were measured for substrates with various electronic substituents at the aryl group. Through these measurements, the intermolecular interactions between cationic catalyst intermediates and different aryl groups were explored. These studies were performed to understand how changes in the catalyst structure affected electrostatic intermolecular interactions. Three different catalysts (N-methylimidazole and two isothioureas) were employed that varied in their ability to delocalize their cationic nature. The results show that more delocalization on the catalyst reduces the sensitivity to the electronics on the aryl group. Surprisingly, the isothiourea with a fused benzene ring provided additional points of interaction with groups that contained lone-pairs, significantly affecting the overall rate. This work helps explore the interactions that dominate in these types of catalytic systems, to aid in future organocatalysis development. Density functional theory (DFT) studies further confirmed isothiourea/aryl ring interaction with the alcohol substrate in the acylation process, which confirmed these hypotheses. Electron rich or lone-pair bearing functional groups stabilize the cationic catalyst core, thereby stabilizing the transition states and accelerating the reaction. It was also discovered that in one case, the formation of a stable substrate dimer was responsible for its lower reactivity.

6.
Org Lett ; 25(30): 5574-5578, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37489808

RESUMEN

The 1,1,1,3,3,3-hexafluoro-2-propanol-assisted allenamide activation enables metal-free regioselective intermolecular interception of amines, constituting a general C-N bond formation process for accessing value-added 1,3-diamines. Exclusive N-chemoselectivity (vs C for anilines) and regioselectivity were achieved for a broad range of substrates. Late-stage modification and further transformations of the 1,3-diamine products showcased the practicability and benefits of this strategy. Experimental mechanistic studies revealed that 1,1,1,3,3,3-hexafluoro-2-propanol mediates the proton transfer for activation of the allenamide. Density functional theory computations revealed the role of NaOAc in the formation of the reactive electrophilic intermediate, which ultimately governs the selective formation of the 1,3-diamine product.

7.
J Am Chem Soc ; 145(13): 7075-7083, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016901

RESUMEN

A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.

8.
Org Lett ; 25(7): 1056-1060, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36762981

RESUMEN

Sulfur(VI) fluoride exchange (SuFEx) is recognized as another emerging tool for click chemistry. The preparation of the functionalized alkyl sulfonyl fluorides as key SuFEx hubs via C(sp3)-C(sp3) bond formation is exceptionally challenging. We report herein a new efficient method for accessing alkyl sulfonyl fluorides incorporating γ-geminal dithioester via phosphazene catalysis. The aqueous, neutral organosuperbase catalytic system amplifies the reactivity by taking advantage of the hydrophobic amplification. SuFEx-active products are applied to the click connection of bioactive molecules. Density functional theory studies show that the selective outcome of the product is guided by an ion-pair organosuperbase catalyst assembly that is potentially stabilized by a hydrogen-bonding interaction between the catalyst and the DTM in the C(sp3)-C(sp3) bond-forming transition structure.

9.
J Org Chem ; 87(16): 10710-10725, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35914193

RESUMEN

A Cu-based catalyst system convergently couples gem-difluoroalkenes with phenols under aerobic conditions to deliver α,α-difluorinated-α-phenoxyketones, an unstudied hybrid fluorinated functional group. Composed of α,α-difluorinated ketone and α,α-difluorinated ether moieties, these compounds have rarely been reported as a synthetic intermediate. Computational predictions and later experimental corroboration suggest that the phenoxy-substituted fluorinated ketone's sp3-hybridized hydrate form is energetically favored relative to the respective nonether variant and that perturbation of the electronic character of the ketone can further encourage the formation of the hydrate. The more facile conversion between ketone and hydrate forms suggests that analogues should readily covalently inhibit proteases and other enzymes. Further functionalization of the ketone group enables access to other useful fluorinated functional groups.


Asunto(s)
Cetonas , Catálisis
10.
J Org Chem ; 87(15): 10105-10113, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35881006

RESUMEN

This Claisen rearrangement establishes the feasibility of DyKAT of γ-epimeric enals via dienamine formation to afford enantioenriched products. γ-Aryl and -alkyl enals, and exocyclic enals that introduce quaternary centers, are all amenable substrates. Products are readily converted into pyrrolidines or cyclopentenols. Notably, a reactive dienamine intermediate has been isolated from a catalytic reaction, fully characterized, and converted to product upon reexposure to reaction conditions. Product configuration arises from a directing C-H···π interaction in the transition state.


Asunto(s)
Estereoisomerismo , Catálisis
11.
Antioxidants (Basel) ; 11(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883889

RESUMEN

The slow pace of discovery of bioactive natural products can be attributed to the difficulty in rapidly identifying them in complex mixtures such as plant extracts. To overcome these hurdles, we explored the utility of two machine learning techniques, i.e., Elastic Net and Random Forests, for identifying the individual anti-inflammatory principle(s) of an extract of the inflorescences of the hops (Humulus lupulus) containing hundreds of natural products. We fractionated a hop extract by column chromatography to obtain 40 impure fractions, determined their anti-inflammatory activity using a macrophage-based bioassay that measures inhibition of iNOS-mediated formation of nitric oxide, and characterized the chemical composition of the fractions by flow-injection HRAM mass spectrometry and LC-MS/MS. Among the top 10 predictors of bioactivity were prenylated flavonoids and humulones. The top Random Forests predictor of bioactivity, xanthohumol, was tested in pure form in the same bioassay to validate the predicted result (IC50 7 µM). Other predictors of bioactivity were identified by spectral similarity with known hop natural products using the Global Natural Products Social Networking (GNPS) algorithm. Our machine learning approach demonstrated that individual bioactive natural products can be identified without the need for extensive and repetitive bioassay-guided fractionation of a plant extract.

12.
Inorg Chem ; 61(13): 5178-5183, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35320671

RESUMEN

Red and near-infrared (NIR) phosphorescent double-decker dinuclear Pt(II) complexes were synthesized, and their structural and spectroscopic properties were characterized. The Pt(II) complexes, which are composed of achiral ligands and are themselves chiral, were shown to exist as racemic mixtures using single-crystal X-ray crystallography. The Pt(II) complexes have different intramolecular Pt-Pt distances that are governed by the electronic characteristics of the component C^N ligands. Specifically, strengthening of π-back-donation between Pt(II) and N atom of the C^N ligand leads to shortening of the Pt-Pt distance. The results of both experimental and computational investigations show that the Pt-Pt distances in the dinuclear Pt(II) complexes significantly influence the band gap energies and corresponding emission wavelengths. Consequently, the uncovered C^N ligand based method to finely control intramolecular Pt-Pt distances in dinuclear Pt(II) complexes can be utilized as a guideline for the design of the double-decker dinuclear Pt(II) complexes with red and NIR tuned phosphorescence.

13.
Angew Chem Int Ed Engl ; 61(17): e202116154, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35142019

RESUMEN

A highly stereo- and regiocontrolled multicomponent approach to skipped 1,4-dienes decorated with one boryl and two silyl functionalities is described. This Pd-catalyzed atom-economical union of allenamides, alkynes, and Me2 PhSiBpin (or Et3 SiBpin) proceeds without the use of phosphine ligands, instead relying on chelation through the internal amide group of the allenamide sulfonyl. A variety of alkynes, including those derived from complex bioactive molecules, can be efficiently coupled with allenamides and Me2 PhSiBpin in good yields and with excellent selectivity. The synthetic potential was demonstrated through multiple valuable chemoselective transformations, establishing new disconnections for functionalized dienes. Density functional theory calculations revealed that the reaction first proceeded through borylation of the allenamide, followed by silylation of the alkyne and then reductive elimination, which convergently assemble the skipped 1,4-diene.

14.
Angew Chem Int Ed Engl ; 60(33): 17925-17931, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34097802

RESUMEN

Single-electron N-heterocyclic carbene (NHC) catalysis has gained attention recently for the synthesis of C-C bonds. Guided by density functional theory and mechanistic analyses, we report the light-driven synthesis of aliphatic and α-amino ketones using single-electron NHC operators. Computational and experimental results reveal that the reactivity of the key radical intermediate is substrate-dependent and can be modulated through steric and electronic parameters of the NHC. Catalyst potential is harnessed in the visible-light driven generation of an acyl azolium radical species that undergoes selective coupling with various radical partners to afford diverse ketone products. This methodology is showcased in the direct late-stage functionalization of amino acids and pharmaceutical compounds, highlighting the utility of single-electron NHC operators.


Asunto(s)
Compuestos Heterocíclicos/química , Cetonas/síntesis química , Luz , Metano/análogos & derivados , Catálisis , Electrones , Cetonas/química , Metano/química , Estructura Molecular , Estereoisomerismo
15.
Org Lett ; 23(4): 1427-1433, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33538600

RESUMEN

A formal haloalkynylation of allenamides has been described for the synthesis of highly stereo- and regioselective skipped halo enynes. Exclusive γ-regioselectivity is achieved through the intermediacy of a conjugated N-tosyliminium intermediate-direct evidence for the formation of which was validated by NMR and HRMS. Quantum mechanical computations reveal that the reactive intermediate geometry is key to controlling the 1,2- or 1,4-regioselectivity of alkyne interception. Divergent access to elusive unsaturated systems has also been reported.

16.
Chemistry ; 27(24): 7168-7175, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33501687

RESUMEN

Herein, the synthesis of 1,2,3,4-tetrasubstituted benzenoid rings, motifs found in pharmaceutical, agrochemical, and natural products, is described.[1] In the past, the regioselective syntheses of such compounds have been a significant challenge. This work reports a method using substituted arynes derived from aryl(Mes)iodonium salts to access a range of densely functionalized 1,2,3,4-tetrasubstituted benzenoid rings. Significantly, it was found that halide substituents are compatible under these conditions, enabling post-synthetic elaboration via palladium-catalyzed coupling. This concise strategy is predicated on two regioselective events: 1) ortho- deprotonation of aryl(Mes)iodonium salts to generate a substituted aryne intermediate, and 2) regioselective trapping of said arynes, thereby improving previously reported reaction conditions to generate arynes at room temperature and in shorter reaction times. Density functional theory (DFT) computations and linear free energy relationship (LFER) analysis suggest the regioselectivity of deprotonation is influenced by both proximal and distal ring substituents on the aryne precursor. A competition experiment further reveals the role of arene substituents on relative reactivity of aryl(Mes)iodoniums as aryne precursors.

17.
Chemistry ; 26(61): 13826-13831, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32833282

RESUMEN

Metal-free hydrocarboxylation of allenamides with various functionalized carboxylic acids were achieved with complete regio- and stereocontrol (>49:1). This environmentally compatible transformation affords γ-acyloxyenamides with exclusive E-selectivity. Electron rich, electron poor, aliphatic, aryl, and heterocyclic carboxylic acids all gave excellent yields (avg. 89 %, 47 examples). We demonstrate the synthetic potential of this transformation in the late-stage modification of complex natural carboxylic acids and simple modification of the products to three-carbon synthons with ample opportunity for further diversification. DFT studies revealed that the reaction occurs in a stepwise manner through the intermediacy of a conjugated iminum species, which is rapidly captured by the carboxylate ion, resulting in the observed linear selectivity.

18.
J Am Chem Soc ; 142(18): 8243-8251, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32283020

RESUMEN

Supramolecular anion receptors can be used to study the molecular recognition properties of the reactive yet biologically critical hydrochalcogenide anions (HCh-). Achieving selectivity for HCh- over the halides is challenging but necessary for not only developing future supramolecular probes for HCh- binding and detection, but also for understanding the fundamental properties that govern these binding and recognition events. Here we demonstrate that linear free energy relationships (LFERs)-including Hammett and Swain-Lupton plots-reveal a clear difference in sensitivity to the polarity of an aryl C-H hydrogen bond (HB) donor for HS- over other HCh- and halides. Analysis using electrostatic potential maps highlights that this difference in sensitivity results from a preference of the aryl C-H HB donor for HS- in this host scaffold. From this study, we demonstrate that LFERs are a powerful tool to gain interpretative insight into motif design for future anion-selective supramolecular receptors and highlight the importance of C-H HB donors for HS- recognition. From our results, we suggest that aryl C-H HB donors should be investigated in the next generation of HS- selective receptors based on the enhanced HS- selectivity over other competing anions in this system.


Asunto(s)
Sulfuros/química , Termodinámica , Enlace de Hidrógeno , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Sulfuros/síntesis química
19.
Nat Chem ; 12(5): 489-496, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32152476

RESUMEN

Transition metal-catalysed C-H functionalization and decarboxylative coupling are two of the most notable synthetic strategies developed in the past 30 years. Here, we connect these two reaction pathways using bases and a simple Pd-based catalyst system to promote a para-selective C-H functionalization reaction from benzylic electrophiles. Experimental and computational mechanistic studies suggest a pathway that involves an uncommon Pd-catalysed dearomatization of the benzyl moiety followed by a base-enabled rearomatization through a formal 1,5-hydrogen migration. This reaction complements 'C-H activation' strategies that convert inert C-H bonds into C-metal bonds prior to C-C bond formation. Instead, this reaction exploits an inverted sequence and promotes C-C bond formation prior to deprotonation. These studies provide an opportunity to develop general para-selective C-H functionalization reactions from benzylic electrophiles and show how new reactive modalities may be accessed with careful control of the reaction conditions.


Asunto(s)
Aminas/química , Carbono/química , Complejos de Coordinación/química , Hidrógeno/química , Metales/química , Elementos de Transición/química , Benceno/química , Catálisis , Transporte de Electrón , Ligandos , Estructura Molecular , Oxidación-Reducción , Fenoles/química , Relación Estructura-Actividad
20.
Inorg Chem ; 59(6): 3934-3941, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32105458

RESUMEN

Herein, we report hydrolysis and condensation chemistries of C4H9SnCl3 to molecular clusters and gel films. Precursor speciation plays a key role in film formation and quality toward realization of atomically smooth surfaces. Density functional theory investigations of C4H9SnCl3 and its reactions show that hydrolysis of the dimer (C4H9Sn)2(OH)2Cl4(H2O)2 has a high energetic penalty in the gas phase and when using a polarizable continuum solvation model based on density. These computations support our observed stability of the dimeric cluster in air, in various solvents, and through initial film deposition. It hydrolyzes and condenses to the [(C4H9Sn)12O14(OH)6]2+ dodecamer on-chip after a post film-deposition bake at 80 °C. Consequently, film surface smoothness is uniquely retained through on-wafer condensation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...