Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; : e14326, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949049

RESUMEN

Effects of anthropogenic activities, including climate change, are modifying fire regimes, and the dynamic nature of these modifications requires identification of general patterns of organisms' responses to fire. This is a challenging task because of the high complexity of factors involved (including climate, geography, land use, and species-specific ecology). We aimed to describe the responses of the reptile community to fire across a range of environmental and fire-history conditions in the western Mediterranean Basin. We sampled 8 sites that spanned 4 Mediterranean countries. We recorded 6064 reptile sightings of 36 species in 1620 transects and modeled 3 community metrics (total number of individuals, species richness, and Shannon diversity) as responses to environmental and fire-history variables. Reptile community composition was also analyzed. Habitat type (natural vs. afforestation), fire age class (time since the last fire), rainfall, and temperature were important factors in explaining these metrics. The total number of individuals varied according to fire age class, reaching a peak at 15-40 years after the last fire. Species richness and Shannon diversity were more stable during postfire years. The 3 community metrics were higher under postfire conditions than in unburned forest plots. This pattern was particularly prevalent in afforested plots, indicating that the negative effect of fire on reptiles was lower than the negative effect of afforestation. Community composition varied by fire age class, indicating the existence of early- and late-successional species (xeric and saxicolous vs. mesic reptiles, respectively). Species richness was 46% higher in areas with a single fire age class relative to those with a mixture of fire age classes, which indicates pyrodiverse landscapes promoted reptile diversity. An expected shift to more frequent fires will bias fire age distribution toward a predominance of early stages, and this will be harmful to reptile communities.


Respuestas de reptiles al fuego en la Cuenca Mediterránea occidental Resumen Los efectos de actividades antropogénicas, incluyendo el cambio climático, están modificando los regímenes de fuego, y la naturaleza dinámica de estas modificaciones requiere la identificación de patrones generales de las respuestas de los organismos al fuego. Esta es una tarea desafiante debido a la gran complejidad de los factores involucrados (incluyendo clima, geografía, uso de suelo y la ecología de cada especie). Nuestro objetivo fue describir las respuestas de la comunidad de reptiles al fuego bajo diversas condiciones ambientales e historias de fuego en la Cuenca Mediterránea occidental. Muestreamos ocho sitios en cuatro países mediterráneos. Registramos 6064 avistamientos de reptiles de 36 especies en 1620 transectos y modelamos tres métricas comunitarias (número total de individuos, riqueza de especies y diversidad de Shannon) como respuestas a las variables ambientales y de historia de fuego. También analizamos la composición de la comunidad de reptiles. El tipo de hábitat (natural versus forestación), la clase de edad del fuego (tiempo transcurrido desde el último incendio), la precipitación pluvial y la temperatura fueron factores importantes en la explicación de estas métricas. El número total de individuos varió de acuerdo con la clase de edad del fuego, alcanzando un pico a los 15­40 años después del último incendio. La riqueza de especies y la diversidad de Shannon fueron más estables durante los años posteriores a incendios. Las tres métricas de la comunidad fueron más altas bajo condiciones post incendio que en las parcelas sin historial de fuego. Este patrón fue particularmente prevalente en parcelas forestadas, lo cual indica que el efecto negativo del fuego sobre los reptiles fue menor que el efecto negativo de la forestación. La composición de la comunidad varió por clase de edad del fuego, indicando la existencia de especies sucesionales tempranas y tardías (reptiles xéricos y saxícolas, respectivamente). La riqueza de especie fue 46% mas alta en áreas con una sola clase de edad del fuego que en aquellas con una mezcla de clases de edad del fuego, lo cual indica que los paisajes pirodiversos promovieron la diversidad de reptiles. Un cambio esperado hacia incendios más frecuentes sesgará la distribución de la edad del fuego hacia una predominancia de etapas tempranas, y esto será perjudicial para las comunidades de reptiles.

2.
Biol Rev Camb Philos Soc ; 97(5): 1930-1947, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35808863

RESUMEN

Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the ß-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.


Asunto(s)
Biodiversidad , Bosques , Animales , Aves , Ecosistema , Humanos , Plantas , Árboles
3.
Curr Zool ; 68(3): 295-303, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35592342

RESUMEN

The invasive snake Hemorrhois hippocrepis colonized the island of Ibiza (Balearic Islands) in 2003 as stowaways inside trunks of olive trees imported for gardening. It has quickly spread since 2010, posing a threat to the island's only remaining endemic vertebrate, the Ibiza wall lizard Podarcis pityusensis. We map the yearly expansion rate of the snake and estimate via transect surveys how severely it affects the distribution and abundance of the endemic lizard. As well, we surveyed 9 of 30 small lizard populations on islets surrounding Ibiza that have been isolated since the Last Glacial Maximum. Snakes had invaded 49% of Ibiza's land area by 2018, and censuses show a critical contrast in lizard abundance between areas with and without snakes; almost all censuses in areas without snakes show lizard presence whereas nearly all censuses in areas with H. hippocrepis lack lizard sightings. Moreover, at least one subspecies previously thriving on one of the offshore islets has become extinct, and there have been several snakes recorded swimming between Ibiza and the surrounding islets. Therefore, lizard populations have been dramatically reduced or have vanished within the range of the snake, and our results quantitatively support upgrading this species' threat level for extinction. This study can inform to programs to manage invasive snake populations and to conservation actions to recover the endemic lizard.

4.
Sci Total Environ ; 732: 139205, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32438172

RESUMEN

Fire is one of the main disturbances to terrestrial environments, transforming habitat structure and affecting community composition. Coupled with fire, forest type and vegetation structure modulate the taxonomic response to fire by ectotherm organisms such as reptiles. The response of each reptile species to fire is based on their functional attributes, which make some species resilient to fire and others vulnerable to that disturbance and only adapted to long-unburnt landscapes. We studied the functional response of a reptile community at 13 burnt sites within the African rim of the Western Mediterranean, and in two contrasting forest types, i.e. native cork oak forests (five sites) and pine plantations (eight sites). We compiled seven functional traits for the reptile species in the study areas, and quantified reptile functional diversity at each sampled plot. Variation in this index was examined from burnt to nearby unburnt plots, both in cork oak and pine forests, with generalized linear mixed models. Redundancy analysis was used to identify which functional traits were associated with particular plot types. We found 2149 individual reptiles from 15 species. The functional response of reptiles to fire was forest-type dependent: functional richness did not change with fire in cork oak forest plots, but increased with fire in the pine plantation ones. High reptile functional richness in cork oak plots was due to high species richness in this forest type. The functional-redundancy analysis showed that cork oak forest hosts a reptile community functionally composed of small Mediterranean ground- and rock-dwelling lizards. In pine plantation plots, however, saxicolous geckos and phytophagous tortoises indicate the availability of other microhabitat and food resources to be exploited by reptile species with different functional traits.


Asunto(s)
Lagartos , Tortugas , Animales , Biodiversidad , Bosques , Pinus , Quercus
5.
PLoS One ; 14(8): e0220969, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31419242

RESUMEN

Fire is a key ecological process in several biomes worldwide. Over recent decades, human activities (e.g. rural abandonment, monoculture plantations) and global warming are magnifying the risk of fire, with changes in fire intensity and frequency. Here, we offer the first study that examines the impact of fire on the spur-thighed tortoise Testudo graeca living in a native cork oak forest and pine plantation in north-western Africa. A total of 44 transects (22 burnt and 22 unburnt) were sampled at 8 sites affected by fires of natural cork oak forest and pine plantation with 8 surveys per site in 2015-2017 (264 hours of sampling effort). Tortoise densities were estimated with line-transect distance sampling. The detection probability of tortoises was higher in burnt (0.915) than unburnt (0.474) transects. The density of tortoises was negatively associated with elevation and declined with fire by c. 50% in both forest types. The negative response of T. graeca to fire should be considered in conservation planning of this species in north-western Africa in a future scenario of changes in fire regime.


Asunto(s)
Conservación de los Recursos Naturales , Seguimiento de Parámetros Ecológicos/tendencias , Incendios , Bosques , Tortugas , África del Norte , África Occidental , Animales , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Pinus , Densidad de Población , Quercus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...