Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 21(1): 133, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103924

RESUMEN

BACKGROUND: Physical activity combined with virtual reality and exergaming has emerged as a new technique to improve engagement and provide clinical benefit for gait and balance disorders in people with Parkinson's disease (PD). OBJECTIVE: To investigate the effects of a training protocol using a home-based exergaming system on brain volume and resting-state functional connectivity (rs-FC) in persons with PD. METHODS: A single blind randomized controlled trial was conducted in people with PD with gait and/or balance disorders. The experimental (active) group performed 18 training sessions at home by playing a custom-designed exergame with full body movements, standing in front of a RGB-D Kinect® motion sensor, while the control group played using the computer keyboard. Both groups received the same training program. Clinical scales, gait recordings, and brain MRI were performed before and after training. We assessed the effects of both training on both the grey matter volumes (GVM) and rs-FC, within and between groups. RESULTS: Twenty-three patients were enrolled and randomly assigned to either the active (n = 11) or control (n = 12) training groups. Comparing pre- to post-training, the active group showed significant improvements in gait and balance disorders, with decreased rs-FC between the sensorimotor, attentional and basal ganglia networks, but with an increase between the cerebellar and basal ganglia networks. In contrast, the control group showed no significant changes, and rs-FC significantly decreased in the mesolimbic and visuospatial cerebellar and basal ganglia networks. Post-training, the rs-FC was greater in the active relative to the control group between the basal ganglia, motor cortical and cerebellar areas, and bilaterally between the insula and the inferior temporal lobe. Conversely, rs FC was lower in the active relative to the control group between the pedunculopontine nucleus and cerebellar areas, between the temporal inferior lobes and the right thalamus, between the left putamen and dorsolateral prefrontal cortex, and within the default mode network. CONCLUSIONS: Full-body movement training using a customized exergame induced brain rs-FC changes within the sensorimotor, attentional and cerebellar networks in people with PD. Further research is needed to comprehensively understand the neurophysiological effects of such training approaches. Trial registration ClinicalTrials.gov NCT03560089.


Asunto(s)
Encéfalo , Terapia por Ejercicio , Enfermedad de Parkinson , Juegos de Video , Humanos , Enfermedad de Parkinson/rehabilitación , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Anciano , Método Simple Ciego , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Terapia por Ejercicio/métodos , Equilibrio Postural/fisiología , Imagen por Resonancia Magnética , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/etiología , Realidad Virtual
2.
Eur J Neurol ; 31(1): e16055, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37691341

RESUMEN

BACKGROUND: Exergaming has been proposed to improve gait and balance disorders in Parkinson's disease (PD) patients. We aimed to assess the efficacy of a home-based, tailored, exergaming training system designed for PD patients with dopa-resistant gait and/or balance disorders in a controlled randomized trial. METHODS: We recruited PD patients with dopa-resistant gait and/or balance disorders. Patients were randomly assigned (1:1 ratio) to receive 18 training sessions at home by playing a tailored exergame with full-body movements using a motion capture system (Active group), or by playing the same game with the computer's keyboard (Control group). The primary endpoint was the between-group difference in the Stand-Walk-Sit Test (SWST) duration change after training. Secondary outcomes included parkinsonian clinical scales, gait recordings, and safety. RESULTS: Fifty PD patients were enrolled and randomized. After training, no significant difference in SWST change was found between groups (mean change SWST duration [SD] -3.71 [18.06] s after Active versus -0.71 [3.41] s after Control training, p = 0.61). Some 32% of patients in the Active and 8% in the Control group were considered responders to the training program (e.g., SWST duration change ≥2 s, p = 0.03). The clinical severity of gait and balance disorders also significantly decreased after Active training, with a between-group difference in favor of the Active training (p = 0.0082). Home-based training induced no serious adverse events. CONCLUSIONS: Home-based training using a tailored exergame can be performed safely by PD patients and could improve gait and balance disorders. Future research is needed to investigate the potential of exergaming.


Asunto(s)
Enfermedad de Parkinson , Juegos de Video , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Videojuego de Ejercicio , Terapia por Ejercicio , Equilibrio Postural , Marcha , Dihidroxifenilalanina
3.
Neurotherapeutics ; 20(4): 1109-1119, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37097344

RESUMEN

Essential tremor (ET) is a disabling condition resulting from a dysfunction of cerebello-thalamo-cortical circuitry. Deep brain stimulation (DBS) or lesion of the ventral-intermediate thalamic nucleus (VIM) is an effective treatment for severe ET. Transcranial cerebellar brain stimulation has recently emerged as a non-invasive potential therapeutic option. Here, we aim to investigate the effects of high-frequency non-invasive cerebellar transcranial alternating current stimulation (tACS) in severe ET patients already operated for VIM-DBS. Eleven ET patients with VIM-DBS, and 10 ET patients without VIM-DBS and matched for tremor severity, were included in this double-blind proof-of-concept controlled study. All patients received unilateral cerebellar sham-tACS and active-tACS for 10 min. Tremor severity was blindly assessed at baseline, without VIM-DBS, during sham-tACS, during and at 0, 20, 40 min after active-tACS, using kinetic recordings during holding posture and action ('nose-to-target') task and videorecorded Fahn-Tolosa-Marin (FTM) clinical scales. In the VIM-DBS group, active-tACS significantly improved both postural and action tremor amplitude and clinical (FTM scales) severity, relative to baseline, whereas sham-tACS did not, with a predominant effect for the ipsilateral arm. Tremor amplitude and clinical severity were also not significantly different between ON VIM-DBS and active-tACS conditions. In the non-VIM-DBS group, we also observed significant improvements in ipsilateral action tremor amplitude, and clinical severity after cerebellar active-tACS, with a trend for improved postural tremor amplitude. In non-VIM-DBS group, sham- active-tACS also decreased clinical scores. These data support the safety and potential efficacy of high-frequency cerebellar-tACS to reduce ET amplitude and severity.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Encefálica Profunda/métodos , Temblor Esencial/terapia , Tálamo , Resultado del Tratamiento , Temblor/terapia , Método Doble Ciego
4.
Parkinsonism Relat Disord ; 96: 13-17, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121249

RESUMEN

INTRODUCTION: Deep brain stimulation (DBS) of the mesencephalic locomotor region, composed of the pedunculopontine (PPN) and cuneiform (CuN) nuclei, has been proposed to treat dopa-resistant gait and balance disorders in Parkinson's disease (PD). Here, we report the long-term effects of PPN- or CuN-DBS on these axial disorders. METHODS: In 6 PD patients operated for mesencephalic locomotor region DBS and prospectively followed for more than 2 years, we assessed the effects of both PPN- and CuN-DBS (On-dopa) in a cross-over single-blind study by using clinical scales and recording gait parameters. Patients were also examined Off-DBS. RESULTS: More than 2 years after surgery, axial and Tinetti scores were significantly aggravated with both PPN- or CuN-DBS relative to before and one year after surgery. Gait recordings revealed an increased double-stance duration with both PPN- or CuN-DBS, higher swing phase duration with CuN-DBS and step width with PPN-DBS. With PPN- versus CuN-DBS, the step length, velocity and cadence were significantly higher; and the double-stance and turn durations significantly lower. Irrespective the target, we found no significant change in clinical scores Off-DBS compared to On-DBS. The duration of anticipatory postural adjustments as well as step length were lower with versus without PPN-DBS. We found no other significant changes in motor, cognitive or psychiatric scores, except an increased anxiety severity. CONCLUSION: In this long-term follow-up study with controlled assessments, PPN- or CuN-DBS did not improve dopa-resistant gait and balance disorders with a worsening of these axial motor signs with time, thus indicating no significant clinical effect.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Tegmental Pedunculopontino , Dihidroxifenilalanina , Estudios de Seguimiento , Marcha , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiología , Método Simple Ciego
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA