Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 255, 2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35366798

RESUMEN

BACKGROUND: The pro-neural transcription factor ASCL1 is a master regulator of neurogenesis and a key factor necessary for the reprogramming of permissive cell types to neurons. Endogenously, ASCL1 expression is often associated with neuroblast stem-ness. Moreover, ASCL1-mediated reprogramming of fibroblasts to differentiated neurons is commonly achieved using artificially high levels of ASCL1 protein, where ASCL1 acts as an "on-target" pioneer factor. However, the genome-wide effects of enhancing ASCL1 activity in a permissive neurogenic environment has not been thoroughly investigated. Here, we overexpressed ASCL1 in the neuronally-permissive context of neuroblastoma (NB) cells where modest endogenous ASCL1 supports the neuroblast programme. RESULTS: Increasing ASCL1 in neuroblastoma cells both enhances binding at existing ASCL1 sites and also leads to creation of numerous additional, lower affinity binding sites. These extensive genome-wide changes in ASCL1 binding result in significant reprogramming of the NB transcriptome, redirecting it from a proliferative neuroblastic state towards one favouring neuronal differentiation. Mechanistically, ASCL1-mediated cell cycle exit and differentiation can be increased further by preventing its multi-site phosphorylation, which is associated with additional changes in genome-wide binding and gene activation profiles. CONCLUSIONS: Our findings show that enhancing ASCL1 activity in a neurogenic environment both increases binding at endogenous ASCL1 sites and also results in additional binding to new low affinity sites that favours neuronal differentiation over the proliferating neuroblast programme supported by the endogenous protein. These findings have important implications for controlling processes of neurogenesis in cancer and cellular reprogramming.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células-Madre Neurales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular/genética , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo
2.
NPJ Breast Cancer ; 8(1): 20, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177654

RESUMEN

Triple Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancer cases, yet is responsible for a disproportionately high percentage of breast cancer mortalities. Thus, there is an urgent need to identify novel biomarkers and therapeutic targets based on the molecular events driving TNBC pathobiology. Estrogen receptor beta (ERß) is known to elicit anti-cancer effects in TNBC, however its mechanisms of action remain elusive. Here, we report the expression profiles of ERß and its association with clinicopathological features and patient outcomes in the largest cohort of TNBC to date. In this cohort, ERß was expressed in approximately 18% of TNBCs, and expression of ERß was associated with favorable clinicopathological features, but correlated with different overall survival outcomes according to menopausal status. Mechanistically, ERß formed a co-repressor complex involving enhancer of zeste homologue 2/polycomb repressive complex 2 (EZH2/PRC2) that functioned to suppress oncogenic NFκB/RELA (p65) activity. Importantly, p65 was shown to be required for formation of this complex and for ERß-mediated suppression of TNBC. Our findings indicate that ERß+ tumors exhibit different characteristics compared to ERß- tumors and demonstrate that ERß functions as a molecular switch for EZH2, repurposing it for tumor suppressive activities and repression of oncogenic p65 signaling.

3.
Cancer Res Commun ; 2(7): 706-724, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36923279

RESUMEN

Inhibiting the androgen receptor (AR), a ligand-activated transcription factor, with androgen deprivation therapy is a standard-of-care treatment for metastatic prostate cancer. Paradoxically, activation of AR can also inhibit the growth of prostate cancer in some patients and experimental systems, but the mechanisms underlying this phenomenon are poorly understood. This study exploited a potent synthetic androgen, methyltestosterone (MeT), to investigate AR agonist-induced growth inhibition. MeT strongly inhibited growth of prostate cancer cells expressing AR, but not AR-negative models. Genes and pathways regulated by MeT were highly analogous to those regulated by DHT, although MeT induced a quantitatively greater androgenic response in prostate cancer cells. MeT potently downregulated DNA methyltransferases, leading to global DNA hypomethylation. These epigenomic changes were associated with dysregulation of transposable element expression, including upregulation of endogenous retrovirus (ERV) transcripts after sustained MeT treatment. Increased ERV expression led to accumulation of double-stranded RNA and a "viral mimicry" response characterized by activation of IFN signaling, upregulation of MHC class I molecules, and enhanced recognition of murine prostate cancer cells by CD8+ T cells. Positive associations between AR activity and ERVs/antiviral pathways were evident in patient transcriptomic data, supporting the clinical relevance of our findings. Collectively, our study reveals that the potent androgen MeT can increase the immunogenicity of prostate cancer cells via a viral mimicry response, a finding that has potential implications for the development of strategies to sensitize this cancer type to immunotherapies. Significance: Our study demonstrates that potent androgen stimulation of prostate cancer cells can elicit a viral mimicry response, resulting in enhanced IFN signaling. This finding may have implications for the development of strategies to sensitize prostate cancer to immunotherapies.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Animales , Ratones , Receptores Androgénicos/genética , Andrógenos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Antagonistas de Andrógenos/farmacología , Linfocitos T CD8-positivos/metabolismo , ADN
4.
Biotechniques ; 72(1): 21-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34841883

RESUMEN

Despite their abundance, mid-sized RNAs (30-300 nt) have not been extensively studied by high-throughput sequencing, mostly due to selective loss in library preparation. The authors propose simple and inexpensive modifications to the Illumina TruSeq protocol (ncRNAseq), allowing the capture and sequencing of mid-sized non-coding RNAs without detriment to the coverage of coding mRNAs. This protocol is coupled with a two-step alignment: a pre-alignment to a curated non-coding genome, passing only the non-mapping reads to a standard genomic alignment. ncRNAseq correctly assigns the highest read-numbers to established abundant non-coding RNAs and correctly identifies cytosolic and nuclear enrichment of known non-coding RNAs in two cell lines.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN no Traducido , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , RNA-Seq , Análisis de Secuencia de ARN/métodos
5.
Cell Rep ; 34(8): 108776, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33626359

RESUMEN

Estrogen receptor-α (ER) drives tumor development in ER-positive (ER+) breast cancer. The transcription factor GATA3 has been closely linked to ER function, but its precise role in this setting remains unclear. Quantitative proteomics was used to assess changes to the ER complex in response to GATA3 depletion. Unexpectedly, few proteins were lost from the ER complex in the absence of GATA3, with the only major change being depletion of the dioxygenase TET2. TET2 binding constituted a near-total subset of ER binding in multiple breast cancer models, with loss of TET2 associated with reduced activation of proliferative pathways. TET2 knockdown did not appear to change global methylated cytosine (5mC) levels; however, oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) was significantly reduced, and these events occurred at ER enhancers. These findings implicate TET2 in the maintenance of 5hmC at ER sites, providing a potential mechanism for TET2-mediated regulation of ER target genes.


Asunto(s)
5-Metilcitosina/análogos & derivados , Neoplasias de la Mama/enzimología , Ensamble y Desensamble de Cromatina , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/metabolismo , 5-Metilcitosina/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas , Dioxigenasas/genética , Antagonistas del Receptor de Estrógeno/farmacología , Receptor alfa de Estrógeno/genética , Femenino , Fulvestrant/farmacología , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones Endogámicos NOD , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Mol Cancer Res ; 18(12): 1759-1766, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046535

RESUMEN

Pediatric cancers often resemble trapped developmental intermediate states that fail to engage the normal differentiation program, typified by high-risk neuroblastoma arising from the developing sympathetic nervous system. Neuroblastoma cells resemble arrested neuroblasts trapped by a stable but aberrant epigenetic program controlled by sustained expression of a core transcriptional circuit of developmental regulators in conjunction with elevated MYCN or MYC (MYC). The transcription factor ASCL1 is a key master regulator in neuroblastoma and has oncogenic and tumor-suppressive activities in several other tumor types. Using functional mutational approaches, we find that preventing CDK-dependent phosphorylation of ASCL1 in neuroblastoma cells drives coordinated suppression of the MYC-driven core circuit supporting neuroblast identity and proliferation, while simultaneously activating an enduring gene program driving mitotic exit and neuronal differentiation. IMPLICATIONS: These findings indicate that targeting phosphorylation of ASCL1 may offer a new approach to development of differentiation therapies in neuroblastoma. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/12/1759/F1.large.jpg.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Neuroblastoma/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Regulación hacia Arriba
7.
Oncogene ; 39(40): 6300-6312, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32843722

RESUMEN

Tamoxifen is the most prescribed selective estrogen receptor (ER) modulator in patients with ER-positive breast cancers. Tamoxifen requires the transcription factor paired box 2 protein (PAX2) to repress the transcription of ERBB2/HER2. Now, we identified that PAX2 inhibits cell growth of ER+/HER2- tumor cells in a dose-dependent manner. Moreover, we have identified that cell growth inhibition can be achieved by expressing moderate levels of PAX2 in combination with tamoxifen treatment. Global run-on sequencing of cells overexpressing PAX2, when coupled with PAX2 ChIP-seq, identified common targets regulated by both PAX2 and tamoxifen. The data revealed that PAX2 can inhibit estrogen-induced gene transcription and this effect is enhanced by tamoxifen, suggesting that they converge on repression of the same targets. Moreover, PAX2 and tamoxifen have an additive effect and both induce coding genes and enhancer RNAs (eRNAs). PAX2-tamoxifen upregulated genes are also enriched with PAX2 eRNAs. The enrichment of eRNAs is associated with the highest expression of genes that positivity regulate apoptotic processes. In luminal tumors, the expression of a subset of these proapoptotic genes predicts good outcome and their expression are significantly reduced in tumors of patients with relapse to tamoxifen treatment. Mechanistically, PAX2 and tamoxifen coexert an antitumoral effect by maintaining high levels of transcription of tumor suppressors that promote cell death. The apoptotic effect is mediated in large part by the gene interferon regulatory factor 1. Altogether, we conclude that PAX2 contributes to better clinical outcome in tamoxifen treated ER-positive breast cancer patients by repressing estrogen signaling and inducing cell death related pathways.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Factor 1 Regulador del Interferón/genética , Recurrencia Local de Neoplasia/genética , Factor de Transcripción PAX2/metabolismo , Antineoplásicos Hormonales/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Secuenciación de Inmunoprecipitación de Cromatina , Estrógenos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Factor 1 Regulador del Interferón/metabolismo , Pronóstico , Regiones Promotoras Genéticas/genética , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba
8.
Cancer Cell ; 38(3): 412-423.e9, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32679107

RESUMEN

The cytokine interleukin-6 (IL6) and its downstream effector STAT3 constitute a key oncogenic pathway, which has been thought to be functionally connected to estrogen receptor α (ER) in breast cancer. We demonstrate that IL6/STAT3 signaling drives metastasis in ER+ breast cancer independent of ER. STAT3 hijacks a subset of ER enhancers to drive a distinct transcriptional program. Although these enhancers are shared by both STAT3 and ER, IL6/STAT3 activity is refractory to standard ER-targeted therapies. Instead, inhibition of STAT3 activity using the JAK inhibitor ruxolitinib decreases breast cancer invasion in vivo. Therefore, IL6/STAT3 and ER oncogenic pathways are functionally decoupled, highlighting the potential of IL6/STAT3-targeted therapies in ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Elementos de Facilitación Genéticos/genética , Receptor alfa de Estrógeno/genética , Interleucina-6/genética , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Animales , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/metabolismo , Femenino , Fulvestrant/farmacología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-6/metabolismo , Estimación de Kaplan-Meier , Células MCF-7 , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Metástasis de la Neoplasia , Factor de Transcripción STAT3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Oncogene ; 39(32): 5455-5467, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32587399

RESUMEN

As the catalog of oncogenic driver mutations is expanding, it becomes clear that alterations in a given gene might have different functions and should not be lumped into one class. The transcription factor GATA3 is a paradigm of this. We investigated the functions of the most common GATA3 mutation (X308_Splice) and five additional mutations, which converge into a neoprotein that we called "neoGATA3," associated with excellent prognosis in patients. Analysis of available molecular data from >3000 breast cancer patients revealed a dysregulation of the ER-dependent transcriptional response in tumors carrying neoGATA3-generating mutations. Mechanistic studies in vitro showed that neoGATA3 interferes with the transcriptional programs controlled by estrogen and progesterone receptors, without fully abrogating them. ChIP-Seq analysis indicated that ER binding is reduced in neoGATA3-expressing cells, especially at distal regions, suggesting that neoGATA3 interferes with the fine tuning of ER-dependent gene expression. This has opposite outputs in distinct hormonal context, having pro- or anti-proliferative effects, depending on the estrogen/progesterone ratio. Our data call for functional analyses of putative cancer drivers to guide clinical application.


Asunto(s)
Neoplasias de la Mama/genética , Factor de Transcripción GATA3/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/fisiología , Femenino , Factor de Transcripción GATA3/inmunología , Factor de Transcripción GATA3/metabolismo , Humanos , Mutación , Oncogenes , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Receptores de Estrógenos/inmunología , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/inmunología , Receptores de Progesterona/metabolismo , Linfocitos T/inmunología , Linfocitos T/patología
11.
Nat Genet ; 52(2): 187-197, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31913353

RESUMEN

Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens to understand endocrine drug resistance, we discovered ARID1A and other SWI/SNF complex components as the factors most critically required for response to two classes of estrogen receptor-alpha (ER) antagonists. In this context, SWI/SNF-specific gene deletion resulted in drug resistance. Unexpectedly, ARID1A was also the top candidate in regard to response to the bromodomain and extraterminal domain inhibitor JQ1, but in the opposite direction, with loss of ARID1A sensitizing breast cancer cells to bromodomain and extraterminal domain inhibition. We show that ARID1A is a repressor that binds chromatin at ER cis-regulatory elements. However, ARID1A elicits repressive activity in an enhancer-specific, but forkhead box A1-dependent and active, ER-independent manner. Deletion of ARID1A resulted in loss of histone deacetylase 1 binding, increased histone 4 lysine acetylation and subsequent BRD4-driven transcription and growth. ARID1A mutations are more frequent in treatment-resistant disease, and our findings provide mechanistic insight into this process while revealing rational treatment strategies for these patients.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasa 1/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/genética , Proliferación Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Histona Desacetilasa 1/genética , Humanos , Células MCF-7 , Ratones Endogámicos NOD , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
PLoS One ; 14(11): e0225180, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31747426

RESUMEN

HER2 is a transmembrane receptor tyrosine kinase, which plays a key role in breast cancer due to a common genomic amplification. It is used as a marker to stratify patients in the clinic and is targeted by a number of drugs including Trastuzumab and Lapatinib. HER2 has previously been shown to translocate to the nucleus. In this study, we have explored the properties of nuclear HER2 by analysing the binding of this protein to the chromatin in two breast cancer cell lines. We find genome-wide re-programming of HER2 binding after treatment with the growth factor EGF and have identified a de novo motif at HER2 binding sites. Over 2,000 HER2 binding sites are found in both breast cancer cell lines after EGF treatment, and according to pathway analysis, these binding sites were enriched near genes involved in protein kinase activity and signal transduction. HER2 was shown to co-localise at a small subset of regions demarcated by H3K4me1, a hallmark of functional enhancer elements and HER2/H3K4me1 co-bound regions were enriched near EGF regulated genes providing evidence for their functional role as regulatory elements. A chromatin bound role for HER2 was verified by independent methods, including Proximity Ligation Assay (PLA), which confirmed a close association between HER2 and H3K4me1. Mass spectrometry analysis of the chromatin bound HER2 complex identified EGFR and STAT3 as interacting partners in the nucleus. These findings reveal a global role for HER2 as a chromatin-associated factor that binds to enhancer elements to elicit direct gene expression events in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/genética , Cromatina , Regulación Neoplásica de la Expresión Génica , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Femenino , Histonas/metabolismo , Humanos , Motivos de Nucleótidos , Unión Proteica , Activación Transcripcional
13.
Cell Rep ; 26(10): 2558-2565.e3, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840881

RESUMEN

Considerable work has linked hormone receptors, such as estrogen receptor-alpha (ER), with the pioneer factor FOXA1. Altered FOXA1 levels contribute to endocrine-resistant breast cancer, where it maintains ER-chromatin interactions, even in contexts in which cells are refractory to ER-targeted drugs. A recent study controversially suggests that FOXA1 binding can be induced by hormonal pathways, including the estrogen-ER complex. We now show that the vast majority (>99%) of FOXA1 binding events are unaffected by steroid activation. A small number (<1%) of FOXA1 binding sites appear to be induced by estrogen, but these are created from chromatin interactions between ER binding sites and adjacent FOXA1 binding sites and do not represent genuine new FOXA1-pioneering elements. FOXA1 is therefore not regulated by estrogen and remains a bone fide pioneer factor that is entirely upstream of the ER complex.


Asunto(s)
Genómica/métodos , Factor Nuclear 3-alfa del Hepatocito/genética , Animales , Línea Celular , Humanos , Células MCF-7 , Conejos , Transducción de Señal
14.
J Exp Bot ; 70(2): 653-670, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30395279

RESUMEN

Non-enzymatic post-translational modifications of proteins can occur when the nucleophilic amino acid side chains of lysine and arginine encounter a reactive metabolite to form advanced glycation end products (AGEs). Glycation arises predominantly from the degradation of reducing sugars, and glycation has been observed during metabolic stress from glucose metabolism in both animals and plants. The implications of glycating proteins on plant proteins and biology has received little attention, and here we describe a robust assessment of global glycation profiles. We identified 112 glycated proteins that were common under a range of growth conditions and abiotic stress treatments, but also showed rosette age, diurnal, and drought stress-specific targets. Among 18 drought stress-specific glycation targets included several thioredoxin and thioredoxin-like proteins. In vitro glycation of two carbohydrate metabolism enzymes led either to a reduction or to a complete inhibition of activity, demonstrating the impact of glycation on protein function. Taken together, our results suggest that stress-specific glycation patterns of a small number of regulatory proteins may have a much broader impact on downstream target proteins that are, for example, associated with primary metabolism.


Asunto(s)
Arabidopsis/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Estrés Fisiológico , Proteínas de Arabidopsis/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Tiorredoxinas/metabolismo , Triosa-Fosfato Isomerasa/metabolismo
15.
Proc Natl Acad Sci U S A ; 115(41): E9580-E9589, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30257941

RESUMEN

Triple-negative breast cancer (TNBC) accounts for a disproportionately high number of deaths due to a lack of targeted therapies and an increased likelihood of distant recurrence. Estrogen receptor beta (ERß), a well-characterized tumor suppressor, is expressed in 30% of TNBCs, and its expression is associated with improved patient outcomes. We demonstrate that therapeutic activation of ERß elicits potent anticancer effects in TNBC through the induction of a family of secreted proteins known as the cystatins, which function to inhibit canonical TGFß signaling and suppress metastatic phenotypes both in vitro and in vivo. These data reveal the involvement of cystatins in suppressing breast cancer progression and highlight the value of ERß-targeted therapies for the treatment of TNBC patients.


Asunto(s)
Cistatinas/metabolismo , Receptor beta de Estrógeno/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Cistatinas/genética , Receptor beta de Estrógeno/agonistas , Receptor beta de Estrógeno/genética , Femenino , Humanos , Ratones , Factor de Crecimiento Transformador beta/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteínas Supresoras de Tumor/agonistas , Proteínas Supresoras de Tumor/genética
16.
Biochim Biophys Acta Gene Regul Mech ; 1861(8): 718-730, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29981477

RESUMEN

CTCF is an evolutionarily conserved and ubiquitously expressed architectural protein regulating a plethora of cellular functions via different molecular mechanisms. CTCF can undergo a number of post-translational modifications which change its properties and functions. One such modifications linked to cancer is poly(ADP-ribosyl)ation (PARylation). The highly PARylated CTCF form has an apparent molecular mass of 180 kDa (referred to as CTCF180), which can be distinguished from hypo- and non-PARylated CTCF with the apparent molecular mass of 130 kDa (referred to as CTCF130). The existing data accumulated so far have been mainly related to CTCF130. However, the properties of CTCF180 are not well understood despite its abundance in a number of primary tissues. In this study we performed ChIP-seq and RNA-seq analyses in human breast cells 226LDM, which display predominantly CTCF130 when proliferating, but CTCF180 upon cell cycle arrest. We observed that in the arrested cells the majority of sites lost CTCF, whereas fewer sites gained CTCF or remain bound (i.e. common sites). The classical CTCF binding motif was found in the lost and common, but not in the gained sites. The changes in CTCF occupancies in the lost and common sites were associated with increased chromatin densities and altered expression from the neighboring genes. Based on these results we propose a model integrating the CTCF130/180 transition with CTCF-DNA binding and gene expression changes. This study also issues an important cautionary note concerning the design and interpretation of any experiments using cells and tissues where CTCF180 may be present.


Asunto(s)
Mama/metabolismo , Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Expresión Génica , Poli ADP Ribosilación , Mama/efectos de los fármacos , Línea Celular , ADN/química , Femenino , Humanos , Hidroxiurea/farmacología , Nocodazol/farmacología , Nucleosomas/metabolismo , Motivos de Nucleótidos
17.
J Exp Bot ; 69(11): 2847-2862, 2018 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-29697803

RESUMEN

In Arabidopsis thaliana, HEAT SHOCK TRANSCRIPTION FACTORA1b (HSFA1b) controls resistance to environmental stress and is a determinant of reproductive fitness by influencing seed yield. To understand how HSFA1b achieves this, we surveyed its genome-wide targets (ChIP-seq) and its impact on the transcriptome (RNA-seq) under non-stress (NS), heat stress (HS) in the wild type, and in HSFA1b-overexpressing plants under NS. A total of 952 differentially expressed HSFA1b-targeted genes were identified, of which at least 85 are development associated and were bound predominantly under NS. A further 1780 genes were differentially expressed but not bound by HSFA1b, of which 281 were classified as having development-associated functions. These genes are indirectly regulated through a hierarchical network of 27 transcription factors (TFs). Furthermore, we identified 480 natural antisense non-coding RNA (cisNAT) genes bound by HSFA1b, defining a further mode of indirect regulation. Finally, HSFA1b-targeted genomic features not only harboured heat shock elements, but also MADS box, LEAFY, and G-Box promoter motifs. This revealed that HSFA1b is one of eight TFs that target a common group of stress defence and developmental genes. We propose that HSFA1b transduces environmental cues to many stress tolerance and developmental genes to allow plants to adjust their growth and development continually in a varying environment.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes del Desarrollo/genética , Genes de Plantas/genética , Factores de Transcripción del Choque Térmico/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Estrés Fisiológico
18.
Mol Cancer Ther ; 17(5): 908-920, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29483206

RESUMEN

The cyclin dependent kinase (CDK)-retinoblastoma (RB)-E2F pathway plays a critical role in the control of cell cycle in estrogen receptor-positive (ER+) breast cancer. Small-molecule inhibitors of CDK4/6 have shown promise in this tumor type in combination with hormonal therapies, reflecting the particular dependence of this subtype of cancer on cyclin D1 and E2F transcription factors. mTOR inhibitors have also shown potential in clinical trials in this disease setting. Recent data have suggested cooperation between the PI3K/mTOR pathway and CDK4/6 inhibition in preventing early adaptation and eliciting growth arrest, but the mechanisms of the interplay between these pathways have not been fully elucidated. Here we show that profound and durable inhibition of ER+ breast cancer growth is likely to require multiple hits on E2F-mediated transcription. We demonstrate that inhibition of mTORC1/2 does not affect ER function directly, but does cause a decrease in cyclin D1 protein, RB phosphorylation, and E2F-mediated transcription. Combination of an mTORC1/2 inhibitor with a CDK4/6 inhibitor results in more profound effects on E2F-dependent transcription, which translates into more durable growth arrest and a delay in the onset of resistance. Combined inhibition of mTORC1/2, CDK4/6, and ER delivers even more profound and durable regressions in breast cancer cell lines and xenografts. Furthermore, we show that CDK4/6 inhibitor-resistant cell lines reactivate the CDK-RB-E2F pathway, but remain sensitive to mTORC1/2 inhibition, suggesting that mTORC1/2 inhibitors may represent an option for patients that have relapsed on CDK4/6 therapy. Mol Cancer Ther; 17(5); 908-20. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Factores de Transcripción E2F/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Benzamidas , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Factores de Transcripción E2F/metabolismo , Femenino , Humanos , Células MCF-7 , Ratones SCID , Morfolinas/administración & dosificación , Piperazinas/administración & dosificación , Piridinas/administración & dosificación , Pirimidinas , Receptores de Estrógenos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
19.
Cell Rep ; 17(10): 2715-2723, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926873

RESUMEN

FOXA1 is a pioneer factor that binds to enhancer regions that are enriched in H3K4 mono- and dimethylation (H3K4me1 and H3K4me2). We performed a FOXA1 rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) screen in ERα-positive MCF-7 breast cancer cells and found histone-lysine N-methyltransferase (MLL3) as the top FOXA1-interacting protein. MLL3 is typically thought to induce H3K4me3 at promoter regions, but recent findings suggest it may contribute to H3K4me1 deposition. We performed MLL3 chromatin immunoprecipitation sequencing (ChIP-seq) in breast cancer cells, and MLL3 was shown to occupy regions marked by FOXA1 occupancy and H3K4me1 and H3K4me2. MLL3 binding was dependent on FOXA1, indicating that FOXA1 recruits MLL3 to chromatin. MLL3 silencing decreased H3K4me1 at enhancer elements but had no appreciable impact on H3K4me3 at enhancer elements. We propose a mechanism whereby the pioneer factor FOXA1 recruits the chromatin modifier MLL3 to facilitate the deposition of H3K4me1 histone marks, subsequently demarcating active enhancer elements.


Asunto(s)
Neoplasias de la Mama/genética , Cromatina/genética , Proteínas de Unión al ADN/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Neoplasias de la Mama/patología , Metilación de ADN/genética , Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Humanos , Células MCF-7 , Regiones Promotoras Genéticas
20.
BMC Plant Biol ; 14: 2, 2014 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-24387666

RESUMEN

BACKGROUND: The perennial species Rhazya stricta (R. stricta) grows in arid zones and carries out typical C3 photosynthesis under daily extremes of heat, light intensity and low humidity. In order to identify processes attributable to its adaptation to this harsh environment, we profiled the foliar transcriptome of apical and mature leaves harvested from the field at three time periods of the same day. RESULTS: Next generation sequencing was used to reconstruct the transcriptome and quantify gene expression. 28018 full length transcript sequences were recovered and 45.4% were differentially expressed (DE) throughout the day. We compared our dataset with microarray experiments in Arabidopsis thaliana (Arabidopsis) and other desert species to identify trends in circadian and stress response profiles between species. 34% of the DE genes were homologous to Arabidopsis circadian-regulated genes. Independent of circadian control, significant overlaps with Arabidopsis genes were observed only with heat and salinity/high light stress-responsive genes. Also, groups of DE genes common to other desert plants species were identified. We identified protein families specific to R. stricta which were found to have diverged from their homologs in other species and which were over -expressed at midday. CONCLUSIONS: This study shows that temporal profiling is essential to assess the significance of genes apparently responsive to abiotic stress. This revealed that in R. stricta, the circadian clock is a major regulator of DE genes, even of those annotated as stress-responsive in other species. This may be an important feature of the adaptation of R. stricta to its extreme but predictable environment. However, the majority of DE genes were not circadian-regulated. Of these, some were common to other desert species and others were distinct to R. stricta, suggesting that they are important for the adaptation of such plants to arid environments.


Asunto(s)
Apocynaceae/genética , Transcriptoma/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...