Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37629799

RESUMEN

This work aims to study a possible modification in the electronic structure of scandia-ceria-stabilized zirconia (10Sc1CeSZ) ceramics sintered at different temperatures. In addition to using X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy to investigate the structural and electrical properties, we employed X-ray photoelectron spectroscopy (XPS) to determine the chemical state information of the atoms involved, along with compositional analysis. As expected, a significant increase in grain ionic conductivity with the sintering temperature was present. This increase was accompanied by a decrease in the porosity of the samples, an increase in the grain size, and a transformation from the rhombohedral to the cubic phase. The phase transformation was detected not only using XRD, but also using XPS and, for this type of ceramic, XPS detected this transformation for the first time. In addition to the changes in the structural characteristics, the increase in the ionic conductivity was accompanied by a modification in the electronic structure of the ceramic surface. The XPS results showed that the surface of the ceramic sintered at the lower temperature of 1100 °C had a higher amount of Zr-OH bonds than the surface of the ceramic sintered at the higher temperature of 1400 °C. The existence of these Zr-OH bonds was confirmed using Fourier-transform infrared spectroscopy (FTIR). From this result, taken together with the difference between the oxygen/zirconium ratios in these ceramics, also identified using XPS, we conclude that there were fewer oxygen vacancies in the ceramic sintered at the lower temperature. It is argued that these two factors, together with the changes in the structural characteristics, have a direct influence on the conductive properties of the studied ceramics sintered at different temperatures.

2.
Sensors (Basel) ; 23(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299832

RESUMEN

One of the main challenges in the development of a plasma diagnostic and control system for DEMO is the need to cope with unprecedented radiation levels in a tokamak during long operation periods. A list of diagnostics required for plasma control has been developed during the pre-conceptual design phase. Different approaches are proposed for the integration of these diagnostics in DEMO: in equatorial and upper ports, in the divertor cassette, on the inner and outer surfaces of the vacuum vessel and in diagnostic slim cassettes, a modular approach developed for diagnostics requiring access to the plasma from several poloidal positions. According to each integration approach, diagnostics will be exposed to different radiation levels, with a considerable impact on their design. This paper provides a broad overview of the radiation environment that diagnostics in DEMO are expected to face. Using the water-cooled lithium lead blanket configuration as a reference, neutronics simulations were performed for pre-conceptual designs of in-vessel, ex-vessel and equatorial port diagnostics representative of each integration approach. Flux and nuclear load calculations are provided for several sub-systems, along with estimations of radiation streaming to the ex-vessel for alternative design configurations. The results can be used as a reference by diagnostic designers.

3.
Rev Sci Instrum ; 89(6): 063504, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960577

RESUMEN

This article presents a novel software-defined server-based solutions that were introduced in the fast, real-time computation systems for soft X-ray diagnostics for the WEST (Tungsten Environment in Steady-state Tokamak) reactor in Cadarache, France. The objective of the research was to provide a fast processing of data at high throughput and with low latencies for investigating the interplay between the particle transport and magnetohydrodynamic activity. The long-term objective is to implement in the future a fast feedback signal in the reactor control mechanisms to sustain the fusion reaction. The implemented electronic measurement device is anticipated to be deployed in the WEST. A standalone software-defined computation engine was designed to handle data collected at high rates in the server back-end of the system. Signals are obtained from the front-end field-programmable gate array mezzanine cards that acquire and perform a selection from the gas electron multiplier detector. A fast, authorial library for plasma diagnostics was written in C++. It originated from reference offline MATLAB implementations. They were redesigned for runtime analysis during the experiment in the novel online modes of operation. The implementation allowed the benchmarking, evaluation, and optimization of plasma processing algorithms with the possibility to check the consistency with reference computations written in MATLAB. The back-end software and hardware architecture are presented with data evaluation mechanisms. The online modes of operation for the WEST are discussed. The results concerning the performance of the processing and the introduced functionality are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...