Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 20(5): 2374-2389, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33752330

RESUMEN

Credible detection and quantification of low abundance proteins from human blood plasma is a major challenge in precision medicine biomarker discovery when using mass spectrometry (MS). In this proof-of-concept study, we employed a mixture of selected recombinant proteins in DDA libraries to subsequently identify (not quantify) cancer-associated low abundance plasma proteins using SWATH/DIA. The exemplar DDA recombinant protein spectral library (rPSL) was derived from tryptic digestion of 36 recombinant human proteins that had been previously implicated as possible cancer biomarkers from both our own and other studies. The rPSL was then used to identify proteins from nondepleted colorectal cancer (CRC) EDTA plasmas by SWATH-MS. Most (32/36) of the proteins used in the rPSL were reliably identified from CRC plasma samples, including 8 proteins (i.e., BTC, CXCL10, IL1B, IL6, ITGB6, TGFα, TNF, TP53) not previously detected using high-stringency protein inference MS according to PeptideAtlas. The rPSL SWATH-MS protocol was compared to DDA-MS using MARS-depleted and postdigestion peptide fractionated plasmas (here referred to as a human plasma DDA library). Of the 32 proteins identified using rPSL SWATH, only 12 could be identified using DDA-MS. The 20 additional proteins exclusively identified using the rPSL SWATH approach were almost exclusively lower abundance (i.e., <10 ng/mL) proteins. To mitigate justified FDR concerns, and to replicate a more typical library creation approach, the DDA rPSL library was merged with a human plasma DDA library and SWATH identification repeated using such a merged library. The majority (33/36) of the low abundance plasma proteins added from the rPSL were still able to be identified using such a merged library when high-stringency HPP Guidelines v3.0 protein inference criteria were applied to our data set. The MS data set has been deposited to ProteomeXchange Consortium via the PRIDE partner repository (PXD022361).


Asunto(s)
Proteoma , Proteómica , Biomarcadores , Proteínas Sanguíneas , Bases de Datos de Proteínas , Humanos , Proteínas Recombinantes
2.
Expert Rev Proteomics ; 17(1): 49-65, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914823

RESUMEN

Introduction: Despite advances in screening and treatment options, colorectal cancer (CRC) remains one of the most prevalent and lethal cancer subtypes. Resistance to cytotoxic or targeted therapy has remained a constant challenge to the treatment and long-term management of patients, attracting intense worldwide investigation since the 1950s. Through extensive investigations into the proteomic mechanisms and functions that convey resistance to therapy/s, researchers have become able to implicate alterations in several signaling pathways that provide and sustain resistance to treatment.Areas covered: In this review, we summarize how protein alterations are associated with resistance to therapy, with particular emphasis on CRC. An overview of the mechanisms of therapeutic resistance is described, highlighting recent studies which endeavor to elucidate the proteomic changes that are associated with the acquisition and promulgation of therapeutic resistance.Expert opinion: While cancers such as CRC have been intensively studied for decades, unresponsiveness and the resistance to therapy remain critical obstacles in the treatment of patients. Due to the inherent biological and clinical heterogeneity of individual CRCs, proteomic methods stand to become powerful tools to provide biological insights that may guide therapeutic strategies with the ultimate goal of refining emergent immunotherapeutic treatments.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos , Proteómica/métodos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Humanos
3.
Clin Proteomics ; 12(1): 10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25987887

RESUMEN

BACKGROUND: Current methods widely deployed for colorectal cancers (CRC) screening lack the necessary sensitivity and specificity required for population-based early disease detection. Cancer-specific protein biomarkers are thought to be produced either by the tumor itself or other tissues in response to the presence of cancers or associated conditions. Equally, known examples of cancer protein biomarkers (e.g., PSA, CA125, CA19-9, CEA, AFP) are frequently found in plasma at very low concentration (pg/mL-ng/mL). New sensitive and specific assays are therefore urgently required to detect the disease at an early stage when prognosis is good following surgical resection. This study was designed to meet the longstanding unmet clinical need for earlier CRC detection by measuring plasma candidate biomarkers of cancer onset and progression in a clinical stage-specific manner. EDTA plasma samples (1 µL) obtained from 75 patients with Dukes' staged CRC or unaffected controls (age and sex matched with stringent inclusion/exclusion criteria) were assayed for expression of 92 human proteins employing the Proseek® Multiplex Oncology I proximity extension assay. An identical set of plasma samples were analyzed utilizing the Bio-Plex Pro™ human cytokine 27-plex immunoassay. RESULTS: Similar quantitative expression patterns for 13 plasma antigens common to both platforms endorsed the potential efficacy of Proseek as an immune-based multiplex assay for proteomic biomarker research. Proseek found that expression of Carcinoembryonic Antigen (CEA), IL-8 and prolactin are significantly correlated with CRC stage. CONCLUSIONS: CEA, IL-8 and prolactin expression were found to identify between control (unaffected), non-malignant (Dukes' A + B) and malignant (Dukes' C + D) stages.

4.
J Proteome Res ; 13(12): 5956-64, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25318615

RESUMEN

Urokinase plasminogen activator receptor (uPAR) and the epithelial integrin αvß6 are thought to individually play critical roles in cancer metastasis. These observations have been highlighted by the recent discovery (by proteomics) of an interaction between these two molecules, which are also both implicated in the epithelial-mesenchymal transition (EMT) that facilitates escape of cells from tissue barriers and is a common signature of cancer metastases. In this study, orthogonal in cellulo and in vitro functional proteomic approaches were used to better characterize the uPAR·αvß6 interaction. Proximity ligation assays (PLA) confirmed the uPAR·αvß6 interaction on OVCA429 (ovarian cancer line) and four different colon cancer cell lines including positive controls in cells with de novo ß6 subunit expression. PLA studies were then validated using peptide arrays, which also identified potential physical sites of uPAR interaction with αvß6, as well as verifying interactions with other known uPAR ligands (e.g., uPA, vitronectin) and individual integrin subunits (i.e., αv, ß1, ß3, and ß6 alone). Our data suggest that interaction with uPAR requires expression of the complete αß heterodimer (e.g., αvß6), not individual subunits (i.e., αv, ß1, ß3, or ß6). Finally, using in silico structural analyses in concert with these functional proteomics studies, we propose and demonstrate that the most likely unique sites of interaction between αvß6 and uPAR are located in uPAR domains II and III.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Integrinas/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Secuencia de Aminoácidos , Antígenos de Neoplasias/química , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Humanos , Integrinas/química , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteómica , Receptores del Activador de Plasminógeno Tipo Uroquinasa/química
5.
J Proteomics ; 79: 299-304, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23201117

RESUMEN

A high degree of optimisation is required in native co-immunoprecipitation (co-IP) experiments with added challenges for low-abundant membrane proteins and masking by IgG molecules. Although in vivo tagged-protein purification avoids the IgG masking problem, modifying the terminus of the protein may result in conformational and post-translational modification changes. In this paper, we propose a method which combines four key aspects to improve the solubility and enrichment of low-abundant plasma membrane proteins using the urokinase plasminogen activator receptor (uPAR) as an example. As this GPI-linked receptor predominantly resides in lipid rafts (LR), we used a modified RIPA lysis buffer containing the non-ionic detergent, octyl-glucoside which solubilizes LRs to extract uPAR. This is followed by a modified crosslinking co-IP which covalently crosslinks the antibodies to the beads. Crosslinking allowed for a significant increase in the detection of uPAR with minimal IgG contamination using on-bead digestion or acid elution followed by digestion and analysis on high-throughput one-dimensional (nanoLC) MS/MS instrument (AbSciex 5600). To the best of our knowledge, this method of isolation is the first to be done to increase the yield of a low-abundant membrane protein and may be useful for the purification of other non-raft and raft-residing membrane proteins.


Asunto(s)
Inmunoprecipitación/métodos , Microdominios de Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Glucósidos , Receptores del Activador de Plasminógeno Tipo Uroquinasa/aislamiento & purificación , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...