Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurosurg Focus ; 57(3): E6, 2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217632

RESUMEN

OBJECTIVE: MR-guided focused ultrasound (MRgFUS) is an evolving technology with numerous present and potential applications in pediatric neurosurgery. The aim of this study was to describe the use of MRgFUS, technical challenges, complications, and lessons learned at a single children's hospital. METHODS: A retrospective analysis was performed of a prospectively collected database of all pediatric patients undergoing investigational use of MRgFUS for treatment of various neurosurgical pathologies at Children's National Hospital. Treatment details, clinical workflow, and standard operating procedures are described. Patient demographics, procedure duration, and complications were obtained through a chart review of anesthesia and operative reports. RESULTS: In total, 45 MRgFUS procedures were performed on 14 patients for treatment of diffuse intrinsic pontine glioma (n = 12), low-grade glioma (n = 1), or secondary dystonia (n = 1) between January 2022 and April 2024. The mean age at treatment was 9 (range 5-22) years, and 64% of the patients were male. With increased experience, the total anesthesia time, sonication time, and change in core body temperature during treatment all significantly decreased. Complications affected 4.4% of patients, including 1 case of scalp edema and 1 patient with a postprocedure epidural hematoma. Device malfunction requiring abortion of the procedure occurred in 1 case (2.2%). Technical challenges related to transducer malfunction and sonication errors occurred in 6.7% and 11.1% of cases, respectively, all overcome by subsequent user modifications. CONCLUSIONS: The authors describe the largest series on MRgFUS technical aspects in pediatric neurosurgery at a single institution, comprising 45 total treatments. This study emphasizes potential technical challenges and provides valuable insights into the nuances of its application in pediatric patients.


Asunto(s)
Procedimientos Neuroquirúrgicos , Humanos , Niño , Masculino , Femenino , Adolescente , Preescolar , Procedimientos Neuroquirúrgicos/métodos , Estudios Retrospectivos , Adulto Joven , Hospitales Pediátricos , Glioma/cirugía , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neoplasias del Tronco Encefálico/cirugía , Neoplasias del Tronco Encefálico/diagnóstico por imagen , Distonía/cirugía , Distonía/diagnóstico por imagen
2.
Childs Nerv Syst ; 40(8): 2333-2344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38702518

RESUMEN

INTRODUCTION: Focused ultrasound (FUS) is an innovative and emerging technology for the treatment of adult and pediatric brain tumors and illustrates the intersection of various specialized fields, including neurosurgery, neuro-oncology, radiation oncology, and biomedical engineering. OBJECTIVE: The authors provide a comprehensive overview of the application and implications of FUS in treating pediatric brain tumors, with a special focus on pediatric low-grade gliomas (pLGGs) and the evolving landscape of this technology and its clinical utility. METHODS: The fundamental principles of FUS include its ability to induce thermal ablation or enhance drug delivery through transient blood-brain barrier (BBB) disruption, emphasizing the adaptability of high-intensity focused ultrasound (HIFU) and low-intensity focused ultrasound (LIFU) applications. RESULTS: Several ongoing clinical trials explore the potential of FUS in offering alternative therapeutic strategies for pathologies where conventional treatments fall short, specifically centrally-located benign CNS tumors and diffuse intrinsic pontine glioma (DIPG). A case illustration involving the use of HIFU for pilocytic astrocytoma is presented. CONCLUSION: Discussions regarding future applications of FUS for the treatment of gliomas include improved drug delivery, immunomodulation, radiosensitization, and other technological advancements.


Asunto(s)
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico por imagen , Niño , Glioma/terapia , Glioma/diagnóstico por imagen , Terapia por Ultrasonido/métodos
3.
Childs Nerv Syst ; 40(1): 73-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658938

RESUMEN

PURPOSE: Subependymal giant cell astrocytoma (SEGA) is a WHO grade I pediatric glioma arising in 5-15% of patients with tuberous sclerosis (TSC). Rare cases of isolated SEGA without TSC have been described. The etiology, genetic mechanisms, natural history, and response to treatment of these lesions are currently unknown. We describe two such cases of isolated SEGA with follow-up. METHODS: Retrospective review was performed at a single institution to describe the clinical course of pathology-confirmed SEGA in patients with germline testing negative for TSC mutations. RESULTS: Two cases of isolated SEGA were identified. Genetic analysis of the tumor specimen was available for one, which revealed an 18 base pair deletion in TSC1. Both cases were managed with surgical resection, one with preoperative embolization. In spite of a gross total resection, one patient experienced recurrence after three years. Treatment with an mTOR inhibitor led to a significant interval reduction of the mass on follow-up MRI. The patient tolerated the medication well for 6 years and is now off of treatment for 2 years with a stable lesion. CONCLUSION: Cases of SEGA outside of the context of TSC are exceedingly rare, with only 48 cases previously described. The genetic mechanisms and treatment response of these lesions are poorly understood. To date, these lesions appear to respond well to mTOR inhibitors and may behave similarly to SEGAs associated with TSC. However, given that experience is extremely limited, these cases should be followed long term to better understand their natural history and treatment response.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Esclerosis Tuberosa , Humanos , Niño , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/diagnóstico por imagen , Esclerosis Tuberosa/genética , Estudios Retrospectivos , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Astrocitoma/terapia , Imagen por Resonancia Magnética/efectos adversos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA