Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824404

RESUMEN

Plant macroevolutionary studies leverage the phylogenetic position of non-flowering model systems like the liverwort Marchantia polymorpha to investigate the origin and evolution of key plant processes. To date, most molecular genetic studies in Marchantia rely on hygromycin and/or chlorsulfuron herbicide resistance markers for the selection of stable transformants. Here, we use a sulfonamide-resistant dihydropteroate synthase (DHPS) gene to enable sulfadiazine-based transformation selection in M. polymorpha. We demonstrate the reliability of sulfadiazine selection on its own and in combination with existing hygromycin and chlorsulfuron selection schemes through transgene stacking experiments. The utility of this system is further demonstrated through confocal microscopy of a triple transgenic line carrying fluorescent proteins labelling the plasma membrane, cortical microtubules, and the nucleus. Collectively, our findings and resources broaden the capacity to genetically manipulate the increasingly popular model liverwort M. polymorpha.

2.
Plant Cell ; 36(7): 2491-2511, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38598645

RESUMEN

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a prominent class of intracellular immune receptors in plants. However, our understanding of plant NLR structure and function is limited to the evolutionarily young flowering plant clade. Here, we describe an extended spectrum of NLR diversity across divergent plant lineages and demonstrate the structural and functional similarities of N-terminal domains that trigger immune responses. We show that the broadly distributed coiled-coil (CC) and toll/interleukin-1 receptor (TIR) domain families of nonflowering plants retain immune-related functions through translineage activation of cell death in the angiosperm Nicotiana benthamiana. We further examined a CC subfamily specific to nonflowering lineages and uncovered an essential N-terminal MAEPL motif that is functionally comparable with motifs in resistosome-forming CC-NLRs. Consistent with a conserved role in immunity, the ectopic activation of CCMAEPL in the nonflowering liverwort Marchantia polymorpha led to profound growth inhibition, defense gene activation, and signatures of cell death. Moreover, comparative transcriptomic analyses of CCMAEPL activity delineated a common CC-mediated immune program shared across evolutionarily divergent nonflowering and flowering plants. Collectively, our findings highlight the ancestral nature of NLR-mediated immunity during plant evolution that dates its origin to at least ∼500 million years ago.


Asunto(s)
Marchantia , Proteínas NLR , Nicotiana , Proteínas de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/inmunología , Marchantia/metabolismo , Dominios Proteicos , Filogenia , Inmunidad de la Planta/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
New Phytol ; 240(2): 496-501, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37525357

RESUMEN

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are important intracellular immune receptors that activate robust plant immune responses upon detecting pathogens. Canonical NLRs consist of a conserved tripartite architecture that includes a central regulatory nucleotide-binding domain, C-terminal leucine-rich repeats, and variable N-terminal domains that directly participate in immune execution. In flowering plants, the vast majority of NLR N-terminal domains belong to the coiled-coil, Resistance to Powdery Mildew 8, or Toll/interleukin-1 receptor subfamilies, with recent structural and biochemical studies providing detailed mechanistic insights into their functions. In this insight review, we focus on the immune-related biochemistries of known plant NLR N-terminal domains and discuss the evolutionary diversity of atypical NLR domains in nonflowering plants. We further contrast these observations against the known diversity of NLR-related receptors from microbes to metazoans across the tree of life.


Asunto(s)
Inmunidad de la Planta , Plantas , Leucina , Plantas/metabolismo , Proteínas NLR/metabolismo , Proteínas Portadoras , Nucleótidos/metabolismo , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas
4.
Plant Commun ; 3(2): 100269, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35529945

RESUMEN

In plants, the antagonism between growth and defense is hardwired by hormonal signaling. The perception of pathogen-associated molecular patterns (PAMPs) from invading microorganisms inhibits auxin signaling and plant growth. Conversely, pathogens manipulate auxin signaling to promote disease, but how this hormone inhibits immunity is not fully understood. Ustilago maydis is a maize pathogen that induces auxin signaling in its host. We characterized a U. maydis effector protein, Naked1 (Nkd1), that is translocated into the host nucleus. Through its native ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, Nkd1 binds to the transcriptional co-repressors TOPLESS/TOPLESS-related (TPL/TPRs) and prevents the recruitment of a transcriptional repressor involved in hormonal signaling, leading to the de-repression of auxin and jasmonate signaling and thereby promoting susceptibility to (hemi)biotrophic pathogens. A moderate upregulation of auxin signaling inhibits the PAMP-triggered reactive oxygen species (ROS) burst, an early defense response. Thus, our findings establish a clear mechanism for auxin-induced pathogen susceptibility. Engineered Nkd1 variants with increased expression or increased EAR-mediated TPL/TPR binding trigger typical salicylic-acid-mediated defense reactions, leading to pathogen resistance. This implies that moderate binding of Nkd1 to TPL is a result of a balancing evolutionary selection process to enable TPL manipulation while avoiding host recognition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Inmunidad de la Planta
5.
Plant Cell ; 34(7): 2785-2805, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35512341

RESUMEN

As the gall-inducing smut fungus Ustilago maydis colonizes maize (Zea mays) plants, it secretes a complex effector blend that suppresses host defense responses, including production of reactive oxygen species (ROS) and redirects host metabolism to facilitate colonization. We show that the U. maydis effector ROS burst interfering protein 1 (Rip1), which is involved in pathogen-associated molecular pattern (PAMP)-triggered suppression of host immunity, is functionally conserved in several other monocot-infecting smut fungi. We also have identified a conserved C-terminal motif essential for Rip1-mediated PAMP-triggered suppression of the ROS burst. The maize susceptibility factor lipoxygenase 3 (Zmlox3) bound by Rip1 was relocalized to the nucleus, leading to partial suppression of the ROS burst. Relocalization was independent of its enzymatic activity, revealing a distinct function for ZmLox3. Most importantly, whereas Zmlox3 maize mutant plants showed increased resistance to U. maydis wild-type strains, rip1 deletion strains infecting the Zmlox3 mutant overcame this effect. This could indicate that Rip1-triggered host resistance depends on ZmLox3 to be suppressed and that lox3 mutation-based resistance of maize to U. maydis requires functional Rip1. Together, our results reveal that Rip1 acts in several cellular compartments to suppress immunity and that targeting of ZmLox3 by Rip1 is responsible for the suppression of Rip1-dependent reduced susceptibility of maize to U. maydis.


Asunto(s)
Ustilago , Zea mays , Basidiomycota , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Ustilago/genética
6.
New Phytol ; 229(6): 3393-3407, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33247447

RESUMEN

Ustilago maydis is the causal agent of maize smut disease. During the colonization process, the fungus secretes effector proteins that suppress immune responses and redirect the host metabolism in favor of the pathogen. As effectors play a critical role during plant colonization, their identification and functional characterization are essential to understanding biotrophy and disease. Using biochemical, molecular, and transcriptomic techniques, we performed a functional characterization of the U. maydis effector Jasmonate/Ethylene signaling inducer 1 (Jsi1). Jsi1 interacts with several members of the plant corepressor family Topless/Topless related (TPL/TPR). Jsi1 expression in Zea mays and Arabidopsis thaliana leads to transcriptional induction of the ethylene response factor (ERF) branch of the jasmonate/ethylene (JA/ET) signaling pathway. In A. thaliana, activation of the ERF branch leads to biotrophic susceptibility. Jsi1 likely activates the ERF branch via an EAR (ET-responsive element binding-factor-associated amphiphilic repression) motif, which resembles EAR motifs from plant ERF transcription factors, that interacts with TPL/TPR proteins. EAR-motif-containing effector candidates were identified from different fungal species, including Magnaporthe oryzae, Sporisorium scitamineum, and Sporisorium reilianum. Interaction between plant TPL proteins and these effector candidates from biotrophic and hemibiotrophic fungi indicates the convergent evolution of effectors modulating the TPL/TPR corepressor hub.


Asunto(s)
Enfermedades de las Plantas , Ustilago , Ascomicetos , Basidiomycota , Proteínas Co-Represoras , Ciclopentanos , Etilenos , Proteínas Fúngicas , Oxilipinas , Zea mays
7.
Elife ; 92020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32851973

RESUMEN

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.


For cells to survive they need to be able to remove faulty or damaged components. The ability to recycle faulty parts is so crucial that some of the molecular machinery responsible is the same across the plant and animal kingdoms. One of the major recycling pathways cells use is autophagy, which labels damaged proteins with molecular tags that say 'eat-me'. Proteins called receptors then recognize these tags and move the faulty component into vesicles that transport the cargo to a specialized compartment that recycles broken parts. Cells make and fold around 40% of their proteins at a site called the endoplasmic reticulum, or ER for short. However, the process of folding and synthesizing proteins is prone to errors. For example, when a cell is under stress this can cause a 'stall' in production, creating a build-up of faulty, partially constructed proteins that are toxic to the cell. There are several quality control systems which help recognize and correct these errors in production. Yet, it remained unclear how autophagy and these quality control mechanisms are linked together. Here, Stephani, Picchianti et al. screened for receptors that regulate the recycling of faulty proteins by binding to the 'eat-me' tags. This led to the identification of a protein called C53, which is found in both plant and animal cells. Microscopy and protein-protein interaction tests showed that C53 moves into transport vesicles when the ER is under stress and faulty proteins start to build-up. Once there, C53 interacts with two proteins embedded in the wall of the endoplasmic reticulum. These proteins form part of the quality control system that senses stalled protein production, labelling the stuck proteins with 'eat-me' tags. Together with C53, they identify and remove half-finished proteins before they can harm the cell. The fact that C53 works in the same way in both plant and human cells suggests that many species might use this receptor to recycle stalled proteins. This has implications for a wide range of research areas, from agriculture to human health. A better understanding of C53 could be beneficial for developing stress-resilient crops. It could also aid research into human diseases, such as cancer and viral infections, that have been linked to C53 and its associated proteins.


Asunto(s)
Autofagia/fisiología , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Homeostasis , Humanos , Proteostasis/fisiología , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...