Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Environ Manage ; 360: 121126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761629

RESUMEN

Soil salinization is a significant global issue that leads to land degradation and loss of ecological function. In coastal areas, salinization hampers vegetation growth, and forestation efforts can accelerate the recovery of ecological functions and enhance resilience to extreme climates. However, the salinity tolerance of tree species varies due to complex biological factors, and results between lab/greenhouse and field studies are often inconsistent. Moreover, in salinized areas affected by extreme climatic and human impacts, afforestation with indigenous species may face adaptability challenges. Therefore, it is crucial to select appropriate cross-species salinity tolerance indicators that have been validated in the field to enhance the success of afforestation and reforestation efforts. This study focuses on five native coastal tree species in Taiwan, conducting afforestation experiments on salt-affected soils mixed with construction and demolition waste. It integrates short-term controlled experiments with potted seedlings and long-term field observations to establish growth performance and physiological and biochemical parameters indicative of salinity tolerance. Results showed that Heritiera littoralis Dryand. exhibited the highest salinity tolerance, accumulating significant leaf proline under increased salinity. Conversely, Melia azedarach Linn. had the lowest tolerance, evidenced by complete defoliation and reduced biomass under salt stress. Generally, the field growth performance of these species aligns with the results of short-term pot experiments. Leaf malondialdehyde content from pot experiments proved to be a reliable cross-species salinity tolerance indicator, correlating negatively with field relative height growth and survival rates. Additionally, parameters related to the photosynthetic system or water status, measured using portable devices, also moderately indicated field survival, aiding in identifying potential salt-tolerant tree species. This study underscores the pivotal role of species selection in afforestation success, demonstrating that small-scale, short-term salinity control experiments coupled with appropriate assessment tools can effectively identify species suitable for highly saline and degraded environments. This approach not only increases the success of afforestation but also conserves resources needed for field replanting and maintenance, supporting sustainable development goals.


Asunto(s)
Suelo , Suelo/química , Salinidad , Taiwán , Árboles , Tolerancia a la Sal , Conservación de los Recursos Naturales
2.
Int J Biol Sci ; 20(3): 1093-1109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322119

RESUMEN

Background: As lung cancer is the leading cause of cancer death worldwide, the development of new medicines is a crucial endeavor. Naringenin, a flavanone derivative, possesses anti-cancer and anti-inflammatory properties and has been reported to have cytotoxic effects on various cancer cells. The current study investigated the underlying molecular mechanism by which naringenin induces cell death in lung cancer. Methods: The expression of apoptosis, cell cycle arrest, and autophagy markers in H1299 and A459 lung cancer cells was evaluated using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL), Western blot, Annexin V/PI stain, PI stain, acridine orange staining, and transmission electron microscopy (TEM). Using fluorescence microscopy, DALGreen was used to observe the degradation of p62, a GFP-LC3 plasmid was used to evaluate puncta formation, and a pcDNA3-GFP-LC3-RFP-LC3ΔG plasmid was used to evaluate autophagy flux. Furthermore, the anti-cancer effect of naringenin was evaluated in a subcutaneous H1299 cell xenograft model. Results: Naringenin treatment of lung cancer cells (H1299 and A459) reduced cell viability and induced cell cycle arrest. Pretreatment of cells with ROS scavengers (N-acetylcysteine or catalase) suppressed the naringenin-induced cleavage of apoptotic protein and restored cyclin-dependent kinase activity. Naringenin also triggered autophagy by mediating ROS generation, thereby activating AMP-activated protein kinase (AMPK) signaling. ROS inhibition not only inhibited naringenin-induced autophagic puncta formation but also decreased the ratio of microtubule-associated proteins 1A/1B light chain 3 II (LC3II)/LC3I and activity of the AMPK signaling pathway. Furthermore, naringenin suppressed tumor growth and promoted apoptosis in the xenograft mouse model. Conclusion: This study demonstrated the potent anti-cancer effects of naringenin on lung cancer cells, thereby providing valuable insights for developing small-molecule drugs that can induce cell cycle arrest, apoptosis, and autophagic cell death.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Flavanonas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Apoptosis , Neoplasias Pulmonares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Autofagia , Flavanonas/farmacología
3.
Aging (Albany NY) ; 15(24): 14900-14914, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38126996

RESUMEN

Despite advances in therapeutic strategies, lung cancer remains the leading cause of cancer-related death worldwide. Acetylshikonin is a derivative of the traditional Chinese medicine Zicao and presents a variety of anticancer properties. However, the effects of acetylshikonin on lung cancer have not been fully understood yet. This study explored the mechanisms underlying acetylshikonin-induced cell death in non-small cell lung cancer (NSCLC). Treating NSCLC cells with acetylshikonin significantly reduced cell viability, as evidenced by chromatin condensation and the appearance of cell debris. Acetylshikonin has also been shown to increase cell membrane permeability and induce cell swelling, leading to an increase in the population of necrotic cells. When investigating the mechanisms underlying acetylshikonin-induced cell death, we discovered that acetylshikonin promoted oxidative stress, decreased mitochondrial membrane potential, and promoted G2/M phase arrest in lung cancer cells. The damage to NSCLC cells induced by acetylshikonin resembled results involving alterations in the cell membrane and mitochondrial morphology. Our analysis of oxidative stress revealed that acetylshikonin induced lipid oxidation and down-regulated the expression of glutathione peroxidase 4 (GPX4), which has been associated with necroptosis. We also determined that acetylshikonin induces the phosphorylation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1)/RIPK3 and mixed lineage kinase domain-like kinase (MLKL). Treatment with RIPK1 inhibitors (necrostatin-1 or 7-Cl-O-Nec-1) significantly reversed acetylshikonin-induced MLKL phosphorylation and NSCLC cell death. These results indicate that acetylshikonin activated the RIPK1/RIPK3/MLKL cascade, leading to necroptosis in NSCLC cells. Our findings indicate that acetylshikonin reduces lung cancer cells by promoting G2/M phase arrest and necroptosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Proteínas Quinasas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Necroptosis , Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
4.
Int J Equity Health ; 22(1): 108, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264411

RESUMEN

BACKGROUND: Access to water and sanitation is a basic human right; however, in many parts of the world, communities experience water, sanitation, and hygiene (WaSH) insecurity. While WaSH insecurity is prevalent in many low and middle-income countries, it is also a problem in high-income countries, like the United States, as is evident in vulnerable populations, including people experiencing homelessness. Limited knowledge exists about the coping strategies unhoused people use to access WaSH services. This study, therefore, examines WaSH access among unhoused communities in Los Angeles, California, a city with the second-highest count of unhoused people across the nation. METHODS: We conducted a cross-sectional study using a snowball sampling technique with 263 unhoused people living in Skid Row, Los Angeles. We calculated frequencies and used multivariable models to describe (1) how unhoused communities cope and gain access to WaSH services in different places, and (2) what individual-level factors contribute to unhoused people's ability to access WaSH services. RESULTS: Our findings reveal that access to WaSH services for unhoused communities in Los Angeles is most difficult at night. Reduced access to overnight sanitation resulted in 19% of the sample population using buckets inside their tents and 28% openly defecating in public spaces. Bottled water and public taps are the primary drinking water source, but 6% of the sample reported obtaining water from fire hydrants, and 50% of the population stores water for night use. Unhoused people also had limited access to water and soap for hand hygiene throughout the day, with 17% of the sample relying on hand sanitizer to clean their hands. Shower and laundry access were among the most limited services available, and reduced people's ability to maintain body hygiene practices and limited employment opportunities. Our regression models suggest that WaSH access is not homogenous among the unhoused. Community differences exist; the odds of having difficulty accessing sanitation services is two times greater for those living outside of Skid Row (Adj OR: 2.52; 95% CI: 1.08-6.37) and three times greater for people who have been unhoused for more than six years compared to people who have been unhoused for less than a year (Adj OR: 3.26; 95% CI: 1.36-8.07). CONCLUSION: Overall, this study suggests a need for more permanent, 24-h access to WaSH services for unhoused communities living in Skid Row, including toilets, drinking water, water and soap for hand hygiene, showers, and laundry services.


Asunto(s)
Higiene , Personas con Mala Vivienda , Saneamiento , Inseguridad Hídrica , Los Angeles , Abastecimiento de Agua , Agua Potable , Humanos , Estudios Transversales , Población Urbana , Masculino , Femenino , Adolescente , Adulto , Persona de Mediana Edad , Anciano
5.
Ecotoxicol Environ Saf ; 258: 114987, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37172407

RESUMEN

The burning incense (BI) behavior could be widely observed in Asia families. Incense sticks are often believed to be made from natural herbs and powders, and to have minimal impact on human health; however, there is limited research to support this claim. The current study aimed to identify the components of BI within the particulate matter 2.5 µm (PM2.5) range and explore if BI has bio-toxicity effects on rat astrocytes (CTX-TNA2). The study also examined the protective effects and underlying molecular mechanisms of tanshinone IIA, a primary lipid-soluble compound found in the herb danshen (Salvia miltiorrhiza Bunge), which has been shown to benefit the central nervous system. Results showed that despite the differences in BI components compared to the atmospheric particulate matter (PM) standards, BI still had a bio-toxicity on astrocytes. BI exposure caused early and late apoptosis, reactive oxygen species (ROS) production, MAPKs (JNK, p38, and ERK), and Akt signaling activation, and inflammation-related proteins (cPLA2, COX-2, HO-1, and MMP-9) increases. Our results further exhibit that the tanshinone IIA pre-treatment could significantly avoid the BI-induced apoptosis and inflammatory signals on rat astrocytes. These findings suggest that BI exposure may cause oxidative stress in rat astrocytes and increase inflammation-related proteins and support the potential of tanshinone IIA as a candidate for preventing BI-related adverse health effects.


Asunto(s)
Abietanos , Astrocitos , Ratas , Animales , Humanos , Abietanos/farmacología , Estrés Oxidativo , Inflamación/inducido químicamente
6.
J Infect Dis ; 228(5): 555-563, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37062677

RESUMEN

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) possess mutations that prevent antibody therapeutics from maintaining antiviral binding and neutralizing efficacy. Monoclonal antibodies (mAbs) shown to neutralize Wuhan-Hu-1 SARS-CoV-2 (ancestral) strain have reduced potency against newer variants. Plasma-derived polyclonal hyperimmune drugs have improved neutralization breadth compared with mAbs, but lower titers against SARS-CoV-2 require higher dosages for treatment. We previously developed a highly diverse, recombinant polyclonal antibody therapeutic anti-SARS-CoV-2 immunoglobulin hyperimmune (rCIG). rCIG was compared with plasma-derived or mAb standards and showed improved neutralization of SARS-CoV-2 across World Health Organization variants; however, its potency was reduced against some variants relative to ancestral, particularly omicron. Omicron-specific antibody sequences were enriched from yeast expressing rCIG-scFv and exhibited increased binding and neutralization to omicron BA.2 while maintaining ancestral strain binding and neutralization. Polyclonal antibody libraries such as rCIG can be utilized to develop antibody therapeutics against present and future SARS-CoV-2 threats.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Anticuerpos Monoclonales/uso terapéutico , Antivirales , Saccharomyces cerevisiae , Anticuerpos Neutralizantes/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales/uso terapéutico
7.
Int J Biol Sci ; 19(5): 1455-1470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056937

RESUMEN

Background: Lung cancer is a malignant tumor with metastatic potential. Chemokine ligand 14 (CXCL14) has been reported to be associated with different cancer cell migration and invasion. However, few studies have explored the function of CXCL14 and its specific receptor in lung cancer metastasis. This study aims to determine the mechanism of CXCL14-promoted cancer metastasis. Methods: The expression of CXCL14, atypical chemokine receptor 2 (ACKR2), and epithelial mesenchymal transition (EMT) markers was evaluated by the public database of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), Western blot, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry (IHC), and immunofluorescence (IF). Migration and wound healing assays were used to observe the motility of cancer cells. A luciferase reporter assay was performed to analyze transcription factor activity. The metastasis of lung cancer cells was evaluated in an orthotopic model. Results: We have presented that overexpression of CXCL14 and ACKR2 was observed in lung cancer datasets, human lung tumor sections, and lung cancer cells. Furthermore, the migration of CXCL14-promoted lung cancer cells was determined in vitro and in vivo. In particular, ACKR2 knockdown abolished CXCL14-induced cancer cell motility. Additionally, ACKR2 was involved in CXCL14-triggered phospholipase Cß3 (PLCß3), protein kinase Cα (PKCα), and proto-oncogene c-Src signaling pathway and subsequently upregulated nuclear factor κB (NF-κB) transcription activity leading to EMT and migration of lung cancer cells. These results indicated that the CXCL14/ACKR2 axis played an important role in lung cancer metastasis. Conclusion: This study is the first to reveal the function of CXCL14 in promoting EMT and metastasis in lung cancer. As a specific receptor for CXCL14 in lung cancer, ACKR2 mediates CXCL14-induced signaling that leads to cell motility. Our findings can be used as a prognostic biomarker of lung cancer metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Transducción de Señal/genética , Receptores de Quimiocina , Quimiocinas CXC/genética
9.
J Clin Immunol ; 43(5): 940-950, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36826743

RESUMEN

PURPOSE: Most individuals with antibody deficiency (hypogammaglobulinemia) need immunoglobulin replacement therapy (IgG-RT) from healthy plasma donors to stay clear of infections. However, a small subset of hypogammaglobulinemic patients do not require this substitution therapy. We set out to investigate this clinical conundrum by asking whether the peripheral B cell receptor repertoires differ between antibody-deficient patients who do and do not need IgG-RT. METHODS: We sequenced and analyzed IgG and IgM heavy chain B cell receptor repertoires from peripheral blood mononuclear cells (PBMCs) isolated from patients with low serum IgG concentrations who did or did not require IgG-RT. RESULTS: Compared to the patients who did not need IgG-RT, those who needed IgG-RT had higher numbers of IgG antibody clones, higher IgM diversity, and less oligoclonal IgG and IgM repertoires. The patient cohorts had different heavy chain variable gene usage, and the patients who needed IgG-RT had elevated frequencies of IgG clones with higher germline identity (i.e., fewer somatic hypermutations). CONCLUSION: Antibody-deficient patients with infection susceptibility who needed IgG-RT had more diverse peripheral antibody repertoires that were less diverged from germline and thus may not be as optimal for targeting pathogens, possibly contributing to infection susceptibility.


Asunto(s)
Inmunoglobulina G , Leucocitos Mononucleares , Humanos , Inmunoglobulina M , Secuencia de Bases , Receptores de Antígenos de Linfocitos B/genética
10.
Nanotechnology ; 34(16)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36657162

RESUMEN

Staphylococcus aureus (S. aureus)forms biofilm that causes periprosthetic joint infections and osteomyelitis (OM) which are the intractable health problems in clinics. The silver-containing nanoparticles (AgNPs) are antibacterial nanomaterials with less cytotoxicity than the classic Ag compounds. Likewise, gold nanoparticles (AuNPs) have also been demonstrated as excellent nanomaterials for medical applications. Previous studies have showed that both AgNPs and AuNPs have anti-microbial or anti-inflammatory properties. We have developed a novel green chemistry that could generate the AuAg nanocomposites, through the reduction of tannic acid (TNA). The bioactivity of the nanocomposites was investigated inS. aureusbiofilm-exposed human osteoblast cells (hFOB1.19). The current synthesis method is a simple, low-cost, eco-friendly, and green chemistry approach. Our results showed that the AuAg nanocomposites were biocompatible with low cell toxicity, and did not induce cell apoptosis nor necrosis in hFOB1.19 cells. Moreover, AuAg nanocomposites could effectively inhibited the accumulation of reactive oxygen species (ROS) in mitochondria and in rest of cellular compartments after exposing to bacterial biofilm (by reducing 0.78, 0.77-fold in the cell and mitochondria, respectively). AuAg nanocomposites also suppressed ROS-triggered inflammatory protein expression via MAPKs and Akt pathways. The current data suggest that AuAg nanocomposites have the potential to be a good therapeutic agent in treating inflammation in bacteria-infected bone diseases.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Humanos , Oro/farmacología , Nanopartículas del Metal/química , Staphylococcus aureus , Especies Reactivas de Oxígeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Nanocompuestos/química , Biopelículas , Inflamación/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA