Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37370619

RESUMEN

Iliac vein compression syndrome (IVCS, or May-Thurner syndrome) occurs due to the compression of the left common iliac vein between the lumbar spine and right common iliac artery. Because most patients with compression are asymptomatic, the syndrome is difficult to diagnose based on the degree of anatomical compression. In this study, we investigated how the tilt angle of the left common iliac vein affects the flow patterns in the compressed blood vessel using three-dimensional computational fluid dynamic (CFD) simulations to determine the flow fields generated after compression sites. A patient-specific iliac venous CFD model was created to verify the boundary conditions and hemodynamic parameter set in this study. Thirty-one patient-specific CFD models with various iliac venous angles were developed using computed tomography (CT) angiograms. The angles between the right or left common iliac vein and inferior vena cava at the confluence level of the common iliac vein were defined as α1 and α2. Flow fields and vortex locations after compression were calculated and compared according to the tilt angle of the veins. Our results showed that α2 affected the incidence of flow field disturbance. At α2 angles greater than 60 degrees, the incidence rate of blood flow disturbance was 90%. In addition, when α2 and α1 + α2 angles were used as indicators, significant differences in tilt angle were found between veins with laminar, transitional, and turbulent flow (p < 0.05). Using this mathematical simulation, we concluded that the tilt angle of the left common iliac vein can be used as an auxiliary indicator to determine IVCS and its severity, and as a reference for clinical decision making.

2.
Nanoscale Res Lett ; 7(1): 322, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22716909

RESUMEN

This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...