Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 111, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956662

RESUMEN

The genetic architecture of Parkinson's disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using parallel single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution. An integrative bioinformatic pipeline was developed and applied for the analyses of these snMulti-omics datasets. The results identified a subpopulation of cortical glutamatergic excitatory neurons with remarkably altered gene expression in PD, including differentially-expressed genes within PD risk loci identified in genome-wide association studies (GWAS). This was the only neuronal subtype showing significant and robust overexpression of SNCA. Further characterization of this neuronal-subpopulation showed upregulation of specific pathways related to axon guidance, neurite outgrowth and post-synaptic structure, and downregulated pathways involved in presynaptic organization and calcium response. Additionally, we characterized the roles of three molecular mechanisms in governing PD-associated cell subtype-specific dysregulation of gene expression: (1) changes in cis-regulatory element accessibility to transcriptional machinery; (2) changes in the abundance of master transcriptional regulators, including YY1, SP3, and KLF16; (3) candidate regulatory variants in high linkage disequilibrium with PD-GWAS genomic variants impacting transcription factor binding affinities. To our knowledge, this study is the first and the most comprehensive interrogation of the multi-omics landscape of PD at a cell-subtype resolution. Our findings provide new insights into a precise glutamatergic neuronal cell subtype, causal genes, and non-coding regulatory variants underlying the neuropathological progression of PD, paving the way for the development of cell- and gene-targeted therapeutics to halt disease progression as well as genetic biomarkers for early preclinical diagnosis.


Asunto(s)
Redes Reguladoras de Genes , Neuronas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Neuronas/metabolismo , Neuronas/patología , Masculino , Femenino , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Anciano , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Estudio de Asociación del Genoma Completo , Transcriptoma , Análisis de la Célula Individual , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , Persona de Mediana Edad , Regulación de la Expresión Génica/genética , Multiómica
2.
bioRxiv ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38798630

RESUMEN

Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and the recently discovered bacterial CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Current state-of-the-art systems consist of a deactivated-Cas9 nuclease (dCas9) fused to one of several epigenetic effector motifs/domains, along with a guide RNA (gRNA) which defines the genomic target. Such systems have been used to safely and effectively silence or activate a specific gene target under a variety of circumstances. Adeno-associated vectors (AAVs) are the therapeutic platform of choice for the delivery of genetic cargo; however, their small packaging capacity is not suitable for delivery of large constructs, which includes most CRISPR/dCas9-effector systems. To circumvent this, many AAV-based CRISPR/Cas tools are delivered in two pieces, from two separate viral cassettes. However, this approach requires higher viral payloads and usually is less efficient. Here we develop a compact dCas9-based repressor system packaged within a single, optimized AAV vector. The system uses a smaller dCas9 variant derived from Staphylococcus aureus ( Sa ). A novel repressor was engineered by fusing the small transcription repression domain (TRD) from MeCP2 with the KRAB repression domain. The final d Sa Cas9-KRAB-MeCP2(TRD) construct can be efficiently packaged, along with its associated gRNA, into AAV particles. Using reporter assays, we demonstrate that the platform is capable of robustly and sustainably repressing the expression of multiple genes-of-interest, both in vitro and in vivo . Moreover, we successfully reduced the expression of ApoE, the stronger genetic risk factor for late onset Alzheimer's disease (LOAD). This new platform will broaden the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.

3.
Mol Ther Nucleic Acids ; 35(1): 102084, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38130373

RESUMEN

Overexpression of SNCA has been implicated in the pathogenesis of synucleinopathies, particularly Parkinson's disease (PD) and dementia with Lewy bodies (DLB). While PD and DLB share some clinical and pathological similarities, each disease presents distinct characteristics, including the primary affected brain region and neuronal type. We aimed to develop neuronal-type-specific SNCA-targeted epigenome therapies for synucleinopathies. The system is based on an all-in-one lentiviral vector comprised of CRISPR-dSaCas9 and guide RNA (gRNA) targeted at SNCA intron 1 fused with a synthetic repressor molecule of Krüppel-associated box (KRAB)/ methyl CpG binding protein 2 (MeCp2) transcription repression domain (TRD). To achieve neuronal-type specificity for dopaminergic and cholinergic neurons, the system was driven by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) promoters, respectively. Delivering the system into human induced pluripotent stem cell (hiPSC)-derived dopaminergic and cholinergic neurons from a patient with the SNCA triplication resulted in efficient and neuronal-type-specific downregulation of SNCA-mRNA and protein. Furthermore, the reduction in SNCA levels by the gRNA-dSaCas9-repressor system rescued disease-related cellular phenotypes including Ser129-phophorylated α-synuclein, neuronal viability, and mitochondrial dysfunction. We established a novel neuronal-type-specific SNCA-targeted epigenome therapy and provided in vitro proof of concept using human-based disease models. Our results support the therapeutic potential of our system for PD and DLB and provide the foundation for further preclinical studies in animal models toward investigational new drug (IND) enablement and clinical trials.

4.
Cell Biosci ; 13(1): 185, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789374

RESUMEN

BACKGROUND: The genetic underpinnings of late-onset Alzheimer's disease (LOAD) are yet to be fully elucidated. Although numerous LOAD-associated loci have been discovered, the causal variants and their target genes remain largely unknown. Since the brain is composed of heterogenous cell subtypes, it is imperative to study the brain on a cell subtype specific level to explore the biological processes underlying LOAD. METHODS: Here, we present the largest parallel single-nucleus (sn) multi-omics study to simultaneously profile gene expression (snRNA-seq) and chromatin accessibility (snATAC-seq) to date, using nuclei from 12 normal and 12 LOAD brains. We identified cell subtype clusters based on gene expression and chromatin accessibility profiles and characterized cell subtype-specific LOAD-associated differentially expressed genes (DEGs), differentially accessible peaks (DAPs) and cis co-accessibility networks (CCANs). RESULTS: Integrative analysis defined disease-relevant CCANs in multiple cell subtypes and discovered LOAD-associated cell subtype-specific candidate cis regulatory elements (cCREs), their candidate target genes, and trans-interacting transcription factors (TFs), some of which, including ELK1, JUN, and SMAD4 in excitatory neurons, were also LOAD-DEGs. Finally, we focused on a subset of cell subtype-specific CCANs that overlap known LOAD-GWAS regions and catalogued putative functional SNPs changing the affinities of TF motifs within LOAD-cCREs linked to LOAD-DEGs, including APOE and MYO1E in a specific subtype of microglia and BIN1 in a subpopulation of oligodendrocytes. CONCLUSIONS: To our knowledge, this study represents the most comprehensive systematic interrogation to date of regulatory networks and the impact of genetic variants on gene dysregulation in LOAD at a cell subtype resolution. Our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of LOAD pathogenesis and define catalogues of candidate genes, cCREs, and variants involved in LOAD genetic etiology and the cell subtypes in which they act to exert their pathogenic effects. Overall, these results suggest that cell subtype-specific cis-trans interactions between regulatory elements and TFs, and the genes dysregulated by these networks contribute to the development of LOAD.

5.
J Alzheimers Dis ; 94(4): 1563-1576, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37458041

RESUMEN

BACKGROUND: The human chromosome 19q13.32 is a gene rich region and has been associated with multiple phenotypes, including late onset Alzheimer's disease (LOAD) and other age-related conditions. OBJECTIVE: Here we developed the first humanized mouse model that contains the entire TOMM40 and APOE genes with all intronic and intergenic sequences including the upstream and downstream regions. Thus, the mouse model carries the human TOMM40 and APOE genes and their intact regulatory sequences. METHODS: We generated the APOE-TOMM40 humanized mouse model in which the entire mouse region was replaced with the human (h)APOE-TOMM40 loci including their upstream and downstream flanking regulatory sequences using recombineering technologies. We then measured the expression of the human TOMM40 and APOE genes in the mice brain, liver, and spleen tissues using TaqMan based mRNA expression assays. RESULTS: We investigated the effects of the '523' polyT genotype (S/S or VL/VL), sex, and age on the human TOMM40- and APOE-mRNAs expression levels using our new humanized mouse model. The analysis revealed tissue specific and shared effects of the '523' polyT genotype, sex, and age on the regulation of the human TOMM40 and APOE genes. Noteworthy, the regulatory effect of the '523' polyT genotype was observed for all studied organs. CONCLUSION: The model offers new opportunities for basic science, translational, and preclinical drug discovery studies focused on the APOE genomic region in relation to LOAD and other conditions in adulthood.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Humanos , Animales , Ratones , Apolipoproteínas E/genética , Genotipo , Fenotipo , Intrones , Expresión Génica , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Predisposición Genética a la Enfermedad , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales
6.
Alzheimers Dement ; 19(9): 4094-4109, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37253165

RESUMEN

BACKGROUND: Short structural variants (SSVs), including insertions/deletions (indels), are common in the human genome and impact disease risk. The role of SSVs in late-onset Alzheimer's disease (LOAD) has been understudied. In this study, we developed a bioinformatics pipeline of SSVs within LOAD-genome-wide association study (GWAS) regions to prioritize regulatory SSVs based on the strength of their predicted effect on transcription factor (TF) binding sites. METHODS: The pipeline utilized publicly available functional genomics data sources including candidate cis-regulatory elements (cCREs) from ENCODE and single-nucleus (sn)RNA-seq data from LOAD patient samples. RESULTS: We catalogued 1581 SSVs in candidate cCREs in LOAD GWAS regions that disrupted 737 TF sites. That included SSVs that disrupted the binding of RUNX3, SPI1, and SMAD3, within the APOE-TOMM40, SPI1, and MS4A6A LOAD regions. CONCLUSIONS: The pipeline developed here prioritized non-coding SSVs in cCREs and characterized their putative effects on TF binding. The approach integrates multiomics datasets for validation experiments using disease models.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Humanos , Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad/genética , Biología Computacional , Genómica , Polimorfismo de Nucleótido Simple
7.
Biomolecules ; 12(11)2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36421693

RESUMEN

Depression is common among late-onset Alzheimer's Disease (LOAD) patients. Only a few studies investigated the genetic variability underlying the comorbidity of depression in LOAD. Moreover, the epigenetic and transcriptomic factors that may contribute to comorbid depression in LOAD have yet to be studied. Using transcriptomic and DNA-methylomic datasets from the ROSMAP cohorts, we investigated differential gene expression and DNA-methylation in LOAD patients with and without comorbid depression. Differential expression analysis did not reveal significant association between differences in gene expression and the risk of depression in LOAD. Upon sex-stratification, we identified 25 differential expressed genes (DEG) in males, of which CHI3L2 showed the strongest upregulation, and only 3 DEGs in females. Additionally, testing differences in DNA-methylation found significant hypomethylation of CpG (cg20442550) on chromosome 17 (log2FC = -0.500, p = 0.004). Sex-stratified differential DNA-methylation analysis did not identify any significant CpG probes. Integrating the transcriptomic and DNA-methylomic datasets did not discover relationships underlying the comorbidity of depression and LOAD. Overall, our study is the first multi-omics genome-wide exploration of the role of gene expression and epigenome alterations in the risk of comorbid depression in LOAD patients. Furthermore, we discovered sex-specific differences in gene expression underlying the risk of depression symptoms in LOAD.


Asunto(s)
Enfermedad de Alzheimer , Metilación de ADN , Depresión , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Quitinasas/genética , Depresión/etiología , Depresión/genética , Epigénesis Genética , Transcriptoma
8.
Alzheimers Dement (N Y) ; 8(1): e12244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35229021

RESUMEN

INTRODUCTION: As new late-onset Alzheimer's disease (LOAD) genetic risk loci are identified and brain cell-type specific omics data becomes available, there is an unmet need for a bioinformatics framework to prioritize genes and variants for testing in single-cell molecular profiling experiments and validation using disease models and gene editing technologies. Prior work has characterized and prioritized active enhancers located in LOAD-genome-wide association study (GWAS) regions and their potential interactions with candidate genes. The current study extends this work by focusing on single nucleotide polymorphisms (SNPs) within these LOAD enhancers and their impact on altering transcription factor (TF) binding. The proposed bioinformatics pipeline progresses from SNPs located in LOAD-GWAS regions to a filtered set of candidate regulatory SNPs that have a predicted strong effect on TF binding. METHODS: Active enhancers within LOAD-associated regions were identified and SNPs located in the enhancers were catalogued. SNPs that disrupt TF binding sites were prioritized and the respective TFs were filtered to include only those that were expressed in brain tissues relevant to LOAD. The TFs binding to the corresponding sequence was further confirmed by ChIP-seq signals. Finally, the high-priority candidate SNPs were evaluated as expression quantitative trait loci (eQTLs) in disease-relevant tissues. RESULTS: We catalogued 61 strong enhancers in LOAD-GWAS regions encompassing 326 SNPs and 104 TF binding sites. Seventy-seven and 78 of the TFs were expressed in brain and monocytes, respectively, out of which 19 TF-binding sites showed ChIP-seq signals. Eleven SNPs were found to interrupt with TF binding out of which three SNPs were also significant eQTL. DISCUSSION: This study provides a framework to catalogue noncoding variations in enhancers located in LOAD-GWAS loci and characterize their likelihood to perturb TF binding. The approach integrates multiple data types to characterize and prioritize SNPs for putative regulatory function using single-cell multi-omics assays and gene editing.

9.
Front Neurosci ; 16: 827447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350557

RESUMEN

Introduction: Depression is a common, though heterogenous, comorbidity in late-onset Alzheimer's Disease (LOAD) patients. In addition, individuals with depression are at greater risk to develop LOAD. In previous work, we demonstrated shared genetic etiology between depression and LOAD. Collectively, these previous studies suggested interactions between depression and LOAD. However, the underpinning genetic heterogeneity of depression co-occurrence with LOAD, and the various genetic etiologies predisposing depression in LOAD, are largely unknown. Methods: Major Depressive Disorder (MDD) genome-wide association study (GWAS) summary statistics were used to create polygenic risk scores (PRS). The Religious Orders Society and Rush Memory and Aging Project (ROSMAP, n = 1,708) and National Alzheimer's Coordinating Center (NACC, n = 10,256) datasets served as discovery and validation cohorts, respectively, to assess the PRS performance in predicting depression onset in LOAD patients. Results: The PRS showed marginal results in standalone models for predicting depression onset in both ROSMAP (AUC = 0.540) and NACC (AUC = 0.527). Full models, with baseline age, sex, education, and APOEε4 allele count, showed improved prediction of depression onset (ROSMAP AUC: 0.606, NACC AUC: 0.581). In time-to-event analysis, standalone PRS models showed significant effects in ROSMAP (P = 0.0051), but not in NACC cohort. Full models showed significant performance in predicting depression in LOAD for both datasets (P < 0.001 for all). Conclusion: This study provided new insights into the genetic factors contributing to depression onset in LOAD and advanced our knowledge of the genetics underlying the heterogeneity of depression in LOAD. The developed PRS accurately predicted LOAD patients with depressive symptoms, thus, has clinical implications including, diagnosis of LOAD patients at high-risk to develop depression for early anti-depressant treatment.

10.
Mol Neurodegener ; 16(1): 58, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429139

RESUMEN

BACKGROUND: In the post-GWAS era, there is an unmet need to decode the underpinning genetic etiologies of late-onset Alzheimer's disease (LOAD) and translate the associations to causation. METHODS: We conducted ATAC-seq profiling using NeuN sorted-nuclei from 40 frozen brain tissues to determine LOAD-specific changes in chromatin accessibility landscape in a cell-type specific manner. RESULTS: We identified 211 LOAD-specific differential chromatin accessibility sites in neuronal-nuclei, four of which overlapped with LOAD-GWAS regions (±100 kb of SNP). While the non-neuronal nuclei did not show LOAD-specific differences, stratification by sex identified 842 LOAD-specific chromatin accessibility sites in females. Seven of these sex-dependent sites in the non-neuronal samples overlapped LOAD-GWAS regions including APOE. LOAD loci were functionally validated using single-nuclei RNA-seq datasets. CONCLUSIONS: Using brain sorted-nuclei enabled the identification of sex-dependent cell type-specific LOAD alterations in chromatin structure. These findings enhance the interpretation of LOAD-GWAS discoveries, provide potential pathomechanisms, and suggest novel LOAD-loci.


Asunto(s)
Enfermedad de Alzheimer/genética , Cromatina/ultraestructura , Neuroglía/ultraestructura , Caracteres Sexuales , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Sitios de Unión , Fraccionamiento Celular/métodos , Núcleo Celular/ultraestructura , Cromatina/genética , Conjuntos de Datos como Asunto , Femenino , Citometría de Flujo , Expresión Génica , Biblioteca de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Neuronas/ultraestructura , Análisis de la Célula Individual , Lóbulo Temporal/ultraestructura , Factores de Transcripción/metabolismo
11.
Front Neurosci ; 15: 652226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994928

RESUMEN

Parkinson's disease (PD) and dementia with Lewy body (DLB) are the most common synucleinopathies. SNCA gene is a major genetic risk factor for these diseases group, and dysregulation of its expression has been implicated in the genetic etiologies of several synucleinopathies. DNA methylation at CpG island (CGI) within SNCA intron 1 has been suggested as a regulatory mechanism of SNCA expression, and changes in methylation levels at this region were associated with PD and DLB. However, the role of DNA methylation in the regulation of SNCA expression in a cell-type specific manner and its contribution to the pathogenesis of PD and DLB remain poorly understood, and the data are conflicting. Here, we employed a bisulfite pyrosequencing technique to profile the DNA methylation across SNCA intron 1 CGI in PD and DLB compared to age- and sex-matched normal control subjects. We analyzed homogenates of bulk post-mortem frozen frontal cortex samples and a subset of neuronal and glia nuclei sorted by the fluorescence-activated nuclei sorting (FANS) method. Bulk brain tissues showed no significant difference in the overall DNA methylation across SNCA intron 1 CGI region between the neuropathological groups. Sorted neuronal nuclei from PD frontal cortex showed significant lower levels of DNA methylation at this region compared to normal controls, but no differences between DLB and control, while sorted glia nuclei exhibited trends of decreased overall DNA methylation in DLB only. In conclusion, our data suggested disease-dependent cell-type specific differential DNA methylation within SNCA intron 1 CGI. These changes may affect SNCA dysregulation that presumably mediates disease-specific risk. Our results can be translated into the development of the SNCA intron 1 CGI region as an attractive therapeutics target for gene therapy in patients who suffer from synucleinopathies due to SNCA dysregulation.

12.
Neuropsychopharmacology ; 46(10): 1788-1801, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34035472

RESUMEN

Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.


Asunto(s)
Nootrópicos , Esquizofrenia , Cognición , Estudio de Asociación del Genoma Completo , Humanos , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Transcriptoma
13.
Mol Ther ; 29(3): 949-972, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33429080

RESUMEN

Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most prevalent age-related neurodegenerative diseases, and currently no effective clinical treatments exist for either, despite decades of clinical trials. The failure to translate preclinical findings into effective treatments is indicative of a problem in the current evaluation pipeline for potential therapeutics. At present, there are no useful animal models for AD and PD research that reflect the entire biology of the diseases, specifically, the more common non-Mendelian forms. Whereas the field continues to seek suitable rodent models for investigating potential therapeutics for these diseases, rodent models have still been used primarily for preclinical studies. Here, we advocate for a paradigm shift toward the application of human-induced pluripotent stem cell (hiPSC)-derived systems for PD and AD modeling and the development of improved human-based models in a dish for drug discovery and preclinical assessment of therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer/terapia , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas/citología , Enfermedad de Parkinson/terapia , Trasplante de Células Madre/métodos , Animales , Humanos , Roedores
14.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513969

RESUMEN

Alzheimer's disease (AD) has a critical unmet medical need. The consensus around the amyloid cascade hypothesis has been guiding pre-clinical and clinical research to focus mainly on targeting beta-amyloid for treating AD. Nevertheless, the vast majority of the clinical trials have repeatedly failed, prompting the urgent need to refocus on other targets and shifting the paradigm of AD drug development towards precision medicine. One such emerging target is apolipoprotein E (APOE), identified nearly 30 years ago as one of the strongest and most reproduceable genetic risk factor for late-onset Alzheimer's disease (LOAD). An exploration of APOE as a new therapeutic culprit has produced some very encouraging results, proving that the protein holds promise in the context of LOAD therapies. Here, we review the strategies to target APOE based on state-of-the-art technologies such as antisense oligonucleotides, monoclonal antibodies, and gene/base editing. We discuss the potential of these initiatives in advancing the development of novel precision medicine therapies to LOAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Apolipoproteínas E/genética , Predisposición Genética a la Enfermedad , Edad de Inicio , Péptidos beta-Amiloides/genética , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Terapia Molecular Dirigida , Medicina de Precisión
15.
Life Sci Soc Policy ; 16(1): 11, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043412

RESUMEN

In the United States alone, the prevalence of AD is expected to more than double from six million people in 2019 to nearly 14 million people in 2050. Meanwhile, the track record for developing treatments for AD has been marked by decades of failure. But recent progress in genetics, neuroscience and gene editing suggest that effective treatments could be on the horizon. The arrival of such treatments would have profound implications for the way we diagnose, triage, study, and allocate resources to Alzheimer's patients. Because the disease is not rare and because it strikes late in life, the development of therapies that are expensive and efficacious but less than cures, will pose particular challenges to healthcare infrastructure. We have a window of time during which we can begin to anticipate just, equitable and salutary ways to accommodate a disease-modifying therapy Alzheimer's disease. Here we consider the implications for caregivers, clinicians, researchers, and the US healthcare system of the availability of an expensive, presymptomatic treatment for a common late-onset neurodegenerative disease for which diagnosis can be difficult.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Política de Salud , Enfermedades de Inicio Tardío/prevención & control , Factores Sociales , Diagnóstico Precoz , Humanos , Estados Unidos
16.
Front Mol Neurosci ; 13: 148, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903507

RESUMEN

Diseases of the central nervous system (CNS) have historically been among the most difficult to treat using conventional pharmacological approaches. This is due to a confluence of factors, including the limited regenerative capacity and overall complexity of the brain, problems associated with repeated drug administration, and difficulties delivering drugs across the blood-brain barrier (BBB). Viral-mediated gene transfer represents an attractive alternative for the delivery of therapeutic cargo to the nervous system. Crucially, it usually requires only a single injection, whether that be a gene replacement strategy for an inherited disorder or the delivery of a genome- or epigenome-modifying construct for treatment of CNS diseases and disorders. It is thus understandable that considerable effort has been put towards the development of improved vector systems for gene transfer into the CNS. Different viral vectors are of course tailored to their specific applications, but they generally should share several key properties. The ideal viral vector incorporates a high-packaging capacity, efficient gene transfer paired with robust and sustained expression, lack of oncogenicity, toxicity and pathogenicity, and scalable manufacturing for clinical applications. In this review, we will devote attention to viral vectors derived from human immunodeficiency virus type 1 (lentiviral vectors; LVs) and adeno-associated virus (AAVs). The high interest in these viral delivery systems vectors is due to: (i) robust delivery and long-lasting expression; (ii) efficient transduction into postmitotic cells, including the brain; (iii) low immunogenicity and toxicity; and (iv) compatibility with advanced manufacturing techniques. Here, we will outline basic aspects of LV and AAV biology, particularly focusing on approaches and techniques aiming to enhance viral safety. We will also allocate a significant portion of this review to the development and use of LVs and AAVs for delivery into the CNS, with a focus on the genome and epigenome-editing tools based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas 9) and the development of novel strategies for the treatment of neurodegenerative diseases (NDDs).

17.
Hum Mol Genet ; 29(18): 3107-3121, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32954426

RESUMEN

Alpha-synuclein SNCA has been implicated in the etiology of Parkinson's disease (PD); however, the normal function of alpha-synuclein protein and the pathway that mediates its pathogenic effect is yet to be discovered. We investigated the mechanistic role of SNCA in the nucleus utilizing isogenic human-induced pluripotent stem cells-derived neurons from PD patients with autosomal dominant mutations, A53T and SNCA-triplication, and their corresponding corrected lines by genome- and epigenome-editing. Comparisons of shape and integrity of the nuclear envelope and its resistance to stresses found that both mutations result in similar nuclear envelope perturbations that were reversed in the isogenic mutation-corrected cells. Further mechanistic studies showed that SNCA mutation has adverse effects on the nucleus by trapping Ras-related nuclear protein (RAN) and preventing it from transporting key nuclear proteins such as, DNMT3A, for maintaining normal nuclear function. For the first time, we proposed that α-syn interacts with RAN and normally functions in the nucleocytoplasmic transport while exerts its pathogenic effect by sequestering RAN. We suggest that defects in the nucleocytoplasmic transport components may be a general pathomechanistic driver of neurodegenerative diseases.


Asunto(s)
Núcleo Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Línea Celular , Núcleo Celular/patología , ADN Metiltransferasa 3A , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/patología
18.
Dis Model Mech ; 13(8)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32859588

RESUMEN

The importance of apolipoprotein E (APOE) in late-onset Alzheimer's disease (LOAD) has been firmly established, but the mechanisms through which it exerts its pathogenic effects remain elusive. In addition, the sex-dependent effects of APOE on LOAD risk and endophenotypes have yet to be explained. In this Review, we revisit the different aspects of APOE involvement in neurodegeneration and neurological diseases, with particular attention to sex differences in the contribution of APOE to LOAD susceptibility. We discuss the role of APOE in a broader range of age-related neurodegenerative diseases, and summarize the biological factors linking APOE to sex hormones, drawing on supportive findings from rodent models to identify major mechanistic themes underlying the exacerbation of LOAD-associated neurodegeneration and pathology in the female brain. Additionally, we list sex-by-genotype interactions identified across neurodegenerative diseases, proposing APOE variants as a shared etiology for sex differences in the manifestation of these diseases. Finally, we present recent advancements in 'omics' technologies, which provide a new platform for more in-depth investigations of how dysregulation of this gene affects the development and progression of neurodegenerative diseases. Collectively, the evidence summarized in this Review highlights the interplay between APOE and sex as a key factor in the etiology of LOAD and other age-related neurodegenerative diseases. We emphasize the importance of careful examination of sex as a contributing factor in studying the underpinning genetics of neurodegenerative diseases in general, but particularly for LOAD.


Asunto(s)
Apolipoproteínas E/genética , Encéfalo/patología , Variación Genética , Disparidades en el Estado de Salud , Degeneración Nerviosa , Enfermedades Neurodegenerativas/genética , Factores de Edad , Animales , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fenotipo , Pronóstico , Medición de Riesgo , Factores de Riesgo , Caracteres Sexuales , Factores Sexuales
19.
Alzheimers Dement ; 16(9): 1280-1292, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32588970

RESUMEN

INTRODUCTION: Late-onset Alzheimer's disease (LOAD) manifests comorbid neuropsychiatric symptoms and posttraumatic stress disorder (PTSD) is associated with an increased risk for dementia in late life, suggesting the two disorders may share genetic etiologies. METHODS: We performed genetic pleiotropy analysis using LOAD and PTSD genome-wide association study (GWAS) datasets from white and African-American populations, followed by functional-genomic analyses. RESULTS: We found an enrichment for LOAD across increasingly stringent levels of significance with the PTSD GWAS association (LOAD|PTSD) in the discovery and replication cohorts and a modest enrichment for the reverse conditional association (PTSD|LOAD). LOAD|PTSD association analysis identified and replicated the MS4A genes region. These genes showed similar expression pattern in brain regions affected in LOAD, and across-brain-tissue analysis identified a significant association for MS4A6A. The African-American samples showed moderate enrichment; however, no false discovery rate-significant associations. DISCUSSION: We demonstrated common genetic signatures for LOAD and PTSD and suggested immune response as a common pathway for these diseases.


Asunto(s)
Enfermedad de Alzheimer , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Trastornos por Estrés Postraumático , Enfermedad de Alzheimer/etnología , Enfermedad de Alzheimer/genética , Humanos , Polimorfismo de Nucleótido Simple , Trastornos por Estrés Postraumático/etnología , Trastornos por Estrés Postraumático/genética
20.
Transl Psychiatry ; 10(1): 88, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152295

RESUMEN

Patients with late-onset Alzheimer's disease (LOAD) frequently manifest comorbid neuropsychiatric symptoms with depression and anxiety being most frequent, and individuals with major depressive disorder (MDD) have an increased prevalence of LOAD. This suggests shared etiologies and intersecting pathways between LOAD and MDD. We performed pleiotropy analyses using LOAD and MDD GWAS data sets from the International Genomics of Alzheimer's Project (IGAP) and the Psychiatric Genomics Consortium (PGC), respectively. We found a moderate enrichment for SNPs associated with LOAD across increasingly stringent levels of significance with the MDD GWAS association (LOAD|MDD), of maximum four and eightfolds, including and excluding the APOE-region, respectively. Association analysis excluding the APOE-region identified numerous SNPs corresponding to 40 genes, 9 of which are known LOAD-risk loci primarily in chromosome 11 regions that contain the SPI1 gene and MS4A genes cluster, and others were novel pleiotropic risk-loci for LOAD conditional with MDD. The most significant associated SNPs on chromosome 11 overlapped with eQTLs found in whole-blood and monocytes, suggesting functional roles in gene regulation. The reverse conditional association analysis (MDD|LOAD) showed a moderate level, ~sevenfold, of polygenic overlap, however, no SNP showed significant association. Pathway analyses replicated previously reported LOAD biological pathways related to immune response and regulation of endocytosis. In conclusion, we provide insights into the overlapping genetic signatures underpinning the common phenotypic manifestations and inter-relationship between LOAD and MDD. This knowledge is crucial to the development of actionable targets for novel therapies to treat depression preceding dementia, in an effort to delay or ultimately prevent the onset of LOAD.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Enfermedad de Alzheimer/genética , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...