Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 167(3): 394-409, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37777338

RESUMEN

The cellular prion protein, PrPC , is a copper-binding protein abundantly expressed in the brain, particularly by neurons, and its conformational conversion into the amyloidogenic isoform, PrPSc , plays a key pathogenic role in prion diseases. However, the role of copper binding to PrPC in prion diseases remains unclear. Here, we fed mice with a low-copper or regular diet and intracerebrally inoculated them with two different mouse-adapted RML scrapie and BSE prions. Mice with a low-copper diet developed disease significantly but only slightly later than those with a regular diet after inoculation with BSE prions, but not with RML prions, suggesting that copper could play a minor role in BSE prion pathogenesis, but not in RML prion pathogenesis. We then generated two lines of transgenic mice expressing mouse PrP with copper-binding histidine (His) residues in the N-terminal domain replaced with alanine residues, termed TgPrP(5H > A)-7342/Prnp0/0 and TgPrP(5H > A)-7524/Prnp0/0 mice, and similarly inoculated RML and BSE prions into them. Due to 2-fold higher expression of PrP(5H > A) than PrPC in wild-type (WT) mice, TgPrP(5H > A)-7524/Prnp0/0 mice were highly susceptible to these prions, compared to WT mice. However, TgPrP(5H > A)-7342/Prnp0/0 mice, which express PrP(5H > A) 1.2-fold as high as PrPC in WT mice, succumbed to disease slightly, but not significantly, later than WT mice after inoculation with RML prions, but significantly so after inoculation with BSE prions. Subsequent secondary inoculation experiments revealed that amino acid sequence differences between PrP(5H > A) and WT PrPSc created no prion transmission barrier to BSE prions. These results suggest that copper-binding His residues in PrPC are dispensable for RML prion pathogenesis but have a minor effect on BSE prion pathogenesis. Taken together, our current results suggest that copper could have a minor effect on prion pathogenesis in a strain-dependent manner through binding to His residues in the N-terminal domain of PrPC .

2.
J Biol Chem ; 298(9): 102381, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35973512

RESUMEN

Conformational conversion of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases. However, the conversion mechanism remains to be elucidated. Here, we generated Tg(PrPΔ91-106)-8545/Prnp0/0 mice, which overexpress mouse PrP lacking residues 91-106. We showed that none of the mice became sick after intracerebral inoculation with RML, 22L, and FK-1 prion strains nor accumulated PrPScΔ91-106 in their brains except for a small amount of PrPScΔ91-106 detected in one 22L-inoculated mouse. However, they developed disease around 85 days after inoculation with bovine spongiform encephalopathy (BSE) prions with PrPScΔ91-106 in their brains. These results suggest that residues 91-106 are important for PrPC conversion into PrPSc in infection with RML, 22L, and FK-1 prions but not BSE prions. We then narrowed down the residues 91-106 by transducing various PrP deletional mutants into RML- and 22L-infected cells and identified that PrP mutants lacking residues 97-99 failed to convert into PrPSc in these cells. Our in vitro conversion assay also showed that RML, 22L, and FK-1 prions did not convert PrPΔ97-99 into PrPScΔ97-99, but BSE prions did. We further found that PrP mutants with proline residues at positions 97 to 99 or charged residues at positions 97 and 99 completely or almost completely lost their converting activity into PrPSc in RML- and 22L-infected cells. These results suggest that the structurally flexible and noncharged residues 97-99 could be important for PrPC conversion into PrPSc following infection with RML, 22L, and FK-1 prions but not BSE prions.


Asunto(s)
Enfermedades por Prión , Proteínas Priónicas , Priones , Animales , Ratones , Enfermedades por Prión/genética , Proteínas Priónicas/química , Proteínas Priónicas/genética , Priones/patogenicidad , Prolina , Isoformas de Proteínas/genética , Translocación Genética
3.
Biosens Bioelectron ; 198: 113832, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34856516

RESUMEN

This study aimed to develop an electrochemical system for measuring blood ATP and lactate levels in a single format. The ratio of lactate to ATP levels was previously reported to provide an alternative illness severity score. Although severity evaluation is crucial to treat patients with acute disease admitted to intensive care units, no sensors are currently available to simply and rapidly measure ATP and lactate levels using the same detection method. Therefore, we constructed an integrated sensing system for ATP and lactate using enzymatic reactions and two sets of electrodes integrated into a chip connected to a single potentiostat operated by a microcontroller. The enzymatic system involves adenylate kinase, pyruvate kinase, and pyruvate oxidase for ATP, and lactate oxidase for lactate, both of which produce hydrogen peroxide. Multiplex enzyme-based reactions were designed to minimize the corresponding operations significantly without enzyme immobilization onto the electrodes. The system was robust in the presence of potentially interfering blood components, such as ascorbate, pyruvate, ADP, urate, and potassium ions. The ATP and lactate levels in the blood were successfully measured using the new sensor with good recoveries. The analytical results of blood samples obtained using our sensor were in good agreement with those using conventional methods. Integrating electrode-based analysis and a microcontroller-based system saved further operations, enabling the straightforward measurement of ATP and lactate levels within 5 min. The proposed sensor may serve as a useful tool in the management of serious infectious diseases.


Asunto(s)
Técnicas Biosensibles , Ácido Láctico , Adenosina Trifosfato , Electrodos , Humanos , Gravedad del Paciente
4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769172

RESUMEN

Prion diseases are a group of fatal neurodegenerative disorders caused by accumulation of proteinaceous infectious particles, or prions, which mainly consist of the abnormally folded, amyloidogenic prion protein, designated PrPSc. PrPSc is produced through conformational conversion of the cellular isoform of prion protein, PrPC, in the brain. To date, no effective therapies for prion diseases have been developed. In this study, we incidentally noticed that mouse neuroblastoma N2a cells persistently infected with 22L scrapie prions, termed N2aC24L1-3 cells, reduced PrPSc levels when cultured in advanced Dulbecco's modified eagle medium (DMEM) but not in classic DMEM. PrPC levels remained unchanged in prion-uninfected parent N2aC24 cells cultured in advanced DMEM. These results suggest that advanced DMEM may contain an anti-prion compound(s). We then successfully identified ethanolamine in advanced DMEM has an anti-prion activity. Ethanolamine reduced PrPSc levels in N2aC24L1-3 cells, but not PrPC levels in N2aC24 cells. Also, oral administration of ethanolamine through drinking water delayed prion disease in mice intracerebrally inoculated with RML scrapie prions. These results suggest that ethanolamine could be a new anti-prion compound.


Asunto(s)
Encéfalo/metabolismo , Etanolamina/farmacología , Proteínas PrPSc , Enfermedades por Prión , Animales , Línea Celular Tumoral , Ratones , Ratones Endogámicos ICR , Proteínas PrPSc/antagonistas & inhibidores , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo
5.
Sci Rep ; 11(1): 10109, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980968

RESUMEN

Misfolding of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, which forms infectious protein aggregates, the so-called prions, is a key pathogenic event in prion diseases. No pathogens other than prions have been identified to induce misfolding of PrPC into PrPSc and propagate infectious prions in infected cells. Here, we found that infection with a neurotropic influenza A virus strain (IAV/WSN) caused misfolding of PrPC into PrPSc and generated infectious prions in mouse neuroblastoma cells through a hit-and-run mechanism. The structural and biochemical characteristics of IAV/WSN-induced PrPSc were different from those of RML and 22L laboratory prions-evoked PrPSc, and the pathogenicity of IAV/WSN-induced prions were also different from that of RML and 22L prions, suggesting IAV/WSN-specific formation of PrPSc and infectious prions. Our current results may open a new avenue for the role of viral infection in misfolding of PrPC into PrPSc and formation of infectious prions.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Gripe Humana/virología , Neuroblastoma/metabolismo , Neuroblastoma/virología , Proteínas Priónicas/química , Línea Celular Tumoral , Humanos , Gripe Humana/genética , Neuroblastoma/genética , Proteínas Priónicas/metabolismo , Conformación Proteica , Pliegue de Proteína
6.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806892

RESUMEN

Prions are infectious agents causing prion diseases, which include Creutzfeldt-Jakob disease (CJD) in humans. Several cases have been reported to be transmitted through medical instruments that were used for preclinical CJD patients, raising public health concerns on iatrogenic transmissions of the disease. Since preclinical CJD patients are currently difficult to identify, medical instruments need to be adequately sterilized so as not to transmit the disease. In this study, we investigated the sterilizing activity of two oxidizing agents, ozone gas and vaporized hydrogen peroxide, against prions fixed on stainless steel wires using a mouse bioassay. Mice intracerebrally implanted with prion-contaminated stainless steel wires treated with ozone gas or vaporized hydrogen peroxide developed prion disease later than those implanted with control prion-contaminated stainless steel wires, indicating that ozone gas and vaporized hydrogen peroxide could reduce prion infectivity on wires. Incubation times were further elongated in mice implanted with prion-contaminated stainless steel wires treated with ozone gas-mixed vaporized hydrogen peroxide, indicating that ozone gas mixed with vaporized hydrogen peroxide reduces prions on these wires more potently than ozone gas or vaporized hydrogen peroxide. These results suggest that ozone gas mixed with vaporized hydrogen peroxide might be more useful for prion sterilization than ozone gas or vaporized hydrogen peroxide alone.


Asunto(s)
Peróxido de Hidrógeno/química , Ozono/química , Priones , Acero Inoxidable , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/farmacología , Ratones , Ozono/farmacología , Proteínas PrPC/antagonistas & inhibidores , Proteínas PrPC/química , Enfermedades por Prión/etiología , Enfermedades por Prión/prevención & control , Acero Inoxidable/química
7.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019549

RESUMEN

Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform, PrPSc, is a key pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Transgenic mice expressing PrP with a deletion of the central residues 91-106 were generated in the absence of endogenous PrPC, designated Tg(PrP∆91-106)/Prnp0/0 mice and intracerebrally inoculated with various prions. Tg(PrP∆91-106)/Prnp0/0 mice were resistant to RML, 22L and FK-1 prions, neither producing PrPSc∆91-106 or prions in the brain nor developing disease after inoculation. However, they remained marginally susceptible to bovine spongiform encephalopathy (BSE) prions, developing disease after elongated incubation times and accumulating PrPSc∆91-106 and prions in the brain after inoculation with BSE prions. Recombinant PrP∆91-104 converted into PrPSc∆91-104 after incubation with BSE-PrPSc-prions but not with RML- and 22L-PrPSc-prions, in a protein misfolding cyclic amplification assay. However, digitonin and heparin stimulated the conversion of PrP∆91-104 into PrPSc∆91-104 even after incubation with RML- and 22L-PrPSc-prions. These results suggest that residues 91-106 or 91-104 of PrPC are crucially involved in prion pathogenesis in a strain-dependent manner and may play a similar role to digitonin and heparin in the conversion of PrPC into PrPSc.


Asunto(s)
Encefalopatía Espongiforme Bovina/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Deficiencias en la Proteostasis/genética , Scrapie/genética , Eliminación de Secuencia , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/patología , Bovinos , Clonación Molecular , Susceptibilidad a Enfermedades , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/patología , Expresión Génica , Inyecciones Intraventriculares , Ratones , Ratones Transgénicos , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/administración & dosificación , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Scrapie/metabolismo , Scrapie/patología , Especificidad de la Especie
8.
PLoS Pathog ; 16(8): e1008823, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845931

RESUMEN

The cellular prion protein, PrPC, is a glycosylphosphatidylinositol anchored-membrane glycoprotein expressed most abundantly in neuronal and to a lesser extent in non-neuronal cells. Its conformational conversion into the amyloidogenic isoform in neurons is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. However, the normal functions of PrPC remain largely unknown, particularly in non-neuronal cells. Here we show that stimulation of PrPC with anti-PrP monoclonal antibodies (mAbs) protected mice from lethal infection with influenza A viruses (IAVs), with abundant accumulation of anti-inflammatory M2 macrophages with activated Src family kinases (SFKs) in infected lungs. A SFK inhibitor dasatinib inhibited M2 macrophage accumulation in IAV-infected lungs after treatment with anti-PrP mAbs and abolished the anti-PrP mAb-induced protective activity against lethal influenza infection in mice. We also show that stimulation of PrPC with anti-PrP mAbs induced M2 polarization in peritoneal macrophages through SFK activation in vitro and in vivo. These results indicate that PrPC could activate SFK in macrophages and induce macrophage polarization to an anti-inflammatory M2 phenotype after stimulation with anti-PrP mAbs, thereby eliciting protective activity against lethal infection with IAVs in mice after treatment with anti-PrP mAbs. These results also highlight PrPC as a novel therapeutic target for IAV infection.


Asunto(s)
Virus de la Influenza A/metabolismo , Pulmón , Macrófagos , Infecciones por Orthomyxoviridae , Proteínas PrPC/metabolismo , Transducción de Señal , Animales , Anticuerpos Monoclonales de Origen Murino/farmacología , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/virología , Ratones , Ratones Mutantes , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Proteínas PrPC/antagonistas & inhibidores , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
9.
Mol Neurobiol ; 57(2): 1203-1216, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31707632

RESUMEN

Conformational conversion of the cellular isoform of prion protein, designated PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an essential pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Lines of evidence indicate that the N-terminal domain, which includes the N-terminal, positively charged polybasic region and the octapeptide repeat (OR) region, is important for PrPC to convert into PrPSc after infection with prions. To further gain insights into the role of the polybasic region and the OR region in prion pathogenesis, we generated two different transgenic mice, designated Tg(PrP3K3A)/Prnp0/0 and Tg(PrP3K3A∆OR)/Prnp0/0 mice, which express PrPC with lysine residues at codons 23, 24, and 27 in the polybasic region mutated with or without a deletion of the OR region on the Prnp0/0 background, respectively, and intracerebrally inoculated them with RML and 22L prions. We show that Tg(PrP3K3A)/Prnp0/0 mice were highly resistant to the prions, indicating that lysine residues at 23, 24, and 27 could be important for the polybasic region to support prion infection. Tg(PrP3K3A∆OR)/Prnp0/0 mice also had reduced susceptibility to RML and 22L prions equivalent to Tg(PrP3K3A)/Prnp0/0 mice. The pre-OR region, including the polybasic region, of PrP3K3A∆OR, but not PrP3K3A, was unusually converted to a protease-resistant structure during conversion to PrPSc3K3A∆OR. These results suggest that, while the OR region could affect the conformation of the polybasic region during conversion of PrPC into PrPSc, the polybasic region could play a crucial role in prion pathogenesis independently of the OR region.


Asunto(s)
Proteínas PrPC/metabolismo , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Priones/metabolismo , Animales , Lisina/metabolismo , Ratones Transgénicos , Eliminación de Secuencia/fisiología
10.
Curr Issues Mol Biol ; 37: 21-32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31814573

RESUMEN

Worldwide spread of influenza A virus (IAV) strains, which are resistant to currently available anti- influenza agents such as viral neuraminidase inhibitors, has encouraged identification of new target molecules for anti-influenza agents. Reactive oxygen species (ROS) causing oxidative stress play a pivotal role in the pathogenesis of lung injuries induced by infection with IAVs, therefore suggesting that anti-oxidative therapeutics targeting cellular molecules could be beneficial against IAV infection without inducing drug-resistant IAV strains. We recently found that the normal cellular prion protein, PrPC, whose conformational conversion into the amyloidogenic isoform, PrPSc, in the brain is a key pathogenic event in prion diseases, is expressed by lung epithelial cells and exerts a protective role against IAV infection in mice by reducing ROS in infected lungs. The Cu content and activity of anti- oxidative enzyme Cu/Zn-superoxide dismutase, or SOD1, were lower in the lungs of PrPC-knockout mice, suggesting that the anti-oxidative activity of PrPC is probably attributable to its function of activating SOD1 through regulating Cu content in lungs. Here, we introduce PrPC as a novel modulator of influenza and its potential implication for anti-oxidative therapies for IAV infection. We also introduce other candidate targets reported for anti- oxidative anti-influenza therapies.


Asunto(s)
Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Gripe Humana/virología , Proteínas Priónicas/farmacología , Animales , Antioxidantes/farmacología , Antivirales/uso terapéutico , Interacciones Huésped-Patógeno , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/genética , Gripe Humana/metabolismo , Oxidación-Reducción/efectos de los fármacos , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo , Replicación Viral/efectos de los fármacos
11.
Mol Carcinog ; 58(10): 1726-1737, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31106493

RESUMEN

Phosphorylation of pyruvate dehydrogenase by pyruvate dehydrogenase kinase 4 (PDK4) 4 inhibits its ability to induce a glycolytic shift. PDK4 expression is frequently upregulated in various cancer tissues, with its elevation being critical for the induction of the Warburg effect. PDK4 is an attractive target for cancer therapy given its effect on shifting glucose metabolism. Previous research has highlighted the necessity of identifying a potent compound to suppress PDK4 activity at the submicromolar concentrations. Here we identified natural diterpene quinones (KIS compounds) that inhibit PDK4 at low micromolar concentrations. KIS37 (cryptotanshinone) inhibited anchorage-independent growth in three-dimensional spheroid and soft agar colony formation assays of KRAS-activated human pancreatic (MIAPaCa-2 and Panc-1) and colorectal (DLD-1 and HCT116) cancer cell lines. KIS37 also suppressed KRAS protein expression in such cell lines. Furthermore, KIS37 suppressed phosphorylation of Rb protein and cyclin D1 protein expression via the PI3K-Akt-mTOR signaling pathway under nonadherent culture conditions and suppressed the expression of cancer stem cell markers CD44, EpCAM, and ALDH1A1 in MIAPaCa-2 cells. KIS37 also suppressed pancreatic cancer cell growth in both subcutaneous xenograft and orthotopic pancreatic tumor models in nude mice at 40 mg/kg (intraperitoneal dose) without any evident toxicity. Reduced ALDH1A1 expression was observed in KIS37-treated pancreatic tumors, suggesting that cancer cell stemness was also suppressed in the orthotopic tumor model. The aforementioned results indicate that KIS37 administration is a novel therapeutic strategy for targeting PDK4 in KRAS-activated intractable human pancreatic cancer.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/genética , Inhibidores Enzimáticos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Retinal-Deshidrogenasa/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Inhibidores Enzimáticos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/genética , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Acute Med Surg ; 6(1): 25-29, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30651994

RESUMEN

AIM: In serious heatstroke, elevated body temperature (>40°C) is considered the main cause of illness. Mitochondrial carnitine palmitoyltransferase II (CPT II) plays an important role in adenosine triphosphate (ATP) generation from long-chain fatty acids, and its thermolabile phenotype of CPT2 polymorphisms leads to ATP production loss under high fever. Whether by heatstroke or influenza, high fever suppresses mitochondrial ATP production in patients with the thermolabile phenotype of CPT2 polymorphisms. We investigated the relation between CPT2 polymorphism and severity of heatstroke with a body temperature of over 40°C. METHODS: We analyzed blood chemistry test results, Japanese Association for Acute Medicine Disseminated Intravascular Coagulation (JAAM DIC), Acute Physiologic and Chronic Health Evaluation II, and Sequential Organ Failure Assessment (SOFA) scores, and CPT2 polymorphisms in 24 consecutive patients with severe heatstroke at two university hospitals. RESULTS: Eleven patients carried thermolabile CPT II variants (rs2229291; c.1055T˃G [p.Phe352Cys]) (F352C), and the genotype frequency was greater in heatstroke patients than in healthy volunteers. There was no significant difference in body temperature or blood chemistry data at emergency room arrival between patients with and without the CPT II variants. However, hospital days were longer and initial antithrombin activity was significantly lower in the variant group, suggesting a possible link with early phase vascular endothelial cell dysfunction. The JAAM DIC diagnostic criteria and SOFA scores were also higher in the group. There were no differences in the serum albumin, serum creatine kinase, and fibrin degradation product levels, and platelet counts. CONCLUSIONS: In addition to known risks (e.g., environmental temperature and old age), the CPT II polymorphism [F352C] can be a predisposing genetic risk factor for serious heatstroke with organ disfunction, and lower antithrombin activity.

13.
DNA Cell Biol ; 37(10): 808-811, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30222366

RESUMEN

The normal cellular prion protein, designated PrPC, is a membrane glycoprotein expressed most abundantly in brains, particularly by neurons, and to a lesser extent in non-neuronal tissues including lungs. Conformational conversion of PrPC into the amyloidogenic isoform is a key pathogenic event in prion diseases. We recently found that PrPC has a protective role against infection with influenza A viruses (IAVs) in mice by reducing reactive oxygen species in the lungs after infection with IAVs. The antioxidative activity of PrPC is probably attributable to its function to activate antioxidative enzyme Cu/Zn-superoxide dismutase, or SOD1, through regulating Cu content in lungs infected with IAVs. Oxidative stress could play a pivotal role in the pathogenesis of a wide range of viral infections. Here, we introduce our and others' studies on the role of PrPC in viral infections, and raise the attractive possibility that PrPC might be a novel target molecule for development of antioxidative therapeutics against not only IAV infection but also other viral infections.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Proteínas de Choque Térmico/inmunología , Pulmón/inmunología , Infecciones por Orthomyxoviridae/genética , Proteínas PrPC/inmunología , Superóxido Dismutasa-1/inmunología , Animales , Cobre/inmunología , Cobre/metabolismo , Activación Enzimática , Células Epiteliales/enzimología , Células Epiteliales/inmunología , Células Epiteliales/virología , Proteínas de Choque Térmico/genética , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/fisiología , Pulmón/enzimología , Pulmón/virología , Ratones , Infecciones por Orthomyxoviridae/enzimología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Estrés Oxidativo , Proteínas PrPC/genética , Factores Protectores , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1/genética
14.
PLoS Pathog ; 14(5): e1007049, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29723291

RESUMEN

The cellular prion protein, designated PrPC, is a membrane glycoprotein expressed abundantly in brains and to a lesser extent in other tissues. Conformational conversion of PrPC into the amyloidogenic isoform is a key pathogenic event in prion diseases. However, the physiological functions of PrPC remain largely unknown, particularly in non-neuronal tissues. Here, we show that PrPC is expressed in lung epithelial cells, including alveolar type 1 and 2 cells and bronchiolar Clara cells. Compared with wild-type (WT) mice, PrPC-null mice (Prnp0/0) were highly susceptible to influenza A viruses (IAVs), with higher mortality. Infected Prnp0/0 lungs were severely injured, with higher inflammation and higher apoptosis of epithelial cells, and contained higher reactive oxygen species (ROS) than control WT lungs. Treatment with a ROS scavenger or an inhibitor of xanthine oxidase (XO), a major ROS-generating enzyme in IAV-infected lungs, rescued Prnp0/0 mice from the lethal infection with IAV. Moreover, Prnp0/0 mice transgenic for PrP with a deletion of the Cu-binding octapeptide repeat (OR) region, Tg(PrPΔOR)/Prnp0/0 mice, were also highly susceptible to IAV infection. These results indicate that PrPC has a protective role against lethal infection with IAVs through the Cu-binding OR region by reducing ROS in infected lungs. Cu content and the activity of anti-oxidant enzyme Cu/Zn-dependent superoxide dismutase, SOD1, were lower in Prnp0/0 and Tg(PrPΔOR)/Prnp0/0 lungs than in WT lungs. It is thus conceivable that PrPC functions to maintain Cu content and regulate SOD1 through the OR region in lungs, thereby reducing ROS in IAV-infected lungs and eventually protecting them from lethal infection with IAVs. Our current results highlight the role of PrPC in protection against IAV infection, and suggest that PrPC might be a novel target molecule for anti-influenza therapeutics.


Asunto(s)
Proteínas PrPC/metabolismo , Proteínas Priónicas/metabolismo , Animales , Encéfalo/patología , Cobre/metabolismo , Susceptibilidad a Enfermedades/metabolismo , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Proteínas PrPC/fisiología , Enfermedades por Prión/metabolismo , Proteínas Priónicas/farmacología , Priones/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
15.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046443

RESUMEN

Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrPC into PrPSc after infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/Prnp0/0 mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrPScΔOR in their brains. We show here that Tg(PrPΔOR)/Prnp0/0 mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrPScΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrPC into PrPSc after infection with BSE prions. However, Tg(PrPΔOR)/Prnp0/0 mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrPScΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/Prnp0/0 mice than PrPSc in control wild-type mice. Taken together, these results indicate that the OR region of PrPC could play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions.IMPORTANCE Structure-function relationship studies of PrPC conformational conversion into PrPSc are worthwhile to understand the mechanism of the conversion of PrPC into PrPSc We show here that, by inoculating Tg(PrPΔOR)/Prnp0/0 mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of PrPC into PrPSc after infection with RML or 22L scrapie prions and BSE prions. PrPΔOR was efficiently converted into PrPScΔOR after infection with RML and 22L prions. However, the conversion of PrPΔOR into PrPScΔOR was markedly delayed after infection with BSE prions. Further investigation into the role of the OR region in the conversion of PrPC into PrPSc after infection with BSE prions might be helpful for understanding the pathogenesis of BSE prions.


Asunto(s)
Susceptibilidad a Enfermedades , Encefalopatía Espongiforme Bovina/fisiopatología , Proteínas PrPC/química , Proteínas PrPC/fisiología , Enfermedades por Prión/fisiopatología , Priones/patogenicidad , Animales , Encéfalo/patología , Bovinos , Encefalopatía Espongiforme Bovina/prevención & control , Humanos , Ratones , Ratones Transgénicos , Oligopéptidos/química , Oligopéptidos/genética , Proteínas PrPC/genética , Enfermedades por Prión/prevención & control , Priones/química , Priones/genética , Eliminación de Secuencia
16.
PLoS Pathog ; 13(6): e1006470, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28665987

RESUMEN

Prion diseases are a group of fatal neurodegenerative disorders caused by prions, which consist mainly of the abnormally folded isoform of prion protein, PrPSc. A pivotal pathogenic event in prion disease is progressive accumulation of prions, or PrPSc, in brains through constitutive conformational conversion of the cellular prion protein, PrPC, into PrPSc. However, the cellular mechanism by which PrPSc is progressively accumulated in prion-infected neurons remains unknown. Here, we show that PrPSc is progressively accumulated in prion-infected cells through degradation of the VPS10P sorting receptor sortilin. We first show that sortilin interacts with PrPC and PrPSc and sorts them to lysosomes for degradation. Consistently, sortilin-knockdown increased PrPSc accumulation in prion-infected cells. In contrast, overexpression of sortilin reduced PrPSc accumulation in prion-infected cells. These results indicate that sortilin negatively regulates PrPSc accumulation in prion-infected cells. The negative role of sortilin in PrPSc accumulation was further confirmed in sortilin-knockout mice infected with prions. The infected mice had accelerated prion disease with early accumulation of PrPSc in their brains. Interestingly, sortilin was reduced in prion-infected cells and mouse brains. Treatment of prion-infected cells with lysosomal inhibitors, but not proteasomal inhibitors, increased the levels of sortilin. Moreover, sortilin was reduced following PrPSc becoming detectable in cells after infection with prions. These results indicate that PrPSc accumulation stimulates sortilin degradation in lysosomes. Taken together, these results show that PrPSc accumulation of itself could impair the sortilin-mediated sorting of PrPC and PrPSc to lysosomes for degradation by stimulating lysosomal degradation of sortilin, eventually leading to progressive accumulation of PrPSc in prion-infected cells.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Priones/metabolismo , Animales , Lisosomas/metabolismo , Ratones , Neuronas/metabolismo , Enfermedades por Prión/metabolismo , Transporte de Proteínas/fisiología
17.
Arch Virol ; 162(7): 1867-1876, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28255815

RESUMEN

The N-terminal polybasic region of the normal prion protein, PrPC, which encompasses residues 23-31, is important for prion pathogenesis by affecting conversion of PrPC into the pathogenic isoform, PrPSc. We previously reported transgenic mice expressing PrP with residues 25-50 deleted in the PrP-null background, designated as Tg(PrP∆preOR)/Prnp 0/0 mice. Here, we produced two new lines of Tg(PrP∆preOR)/Prnp 0/0 mice, each expressing the mutant protein, PrP∆preOR, 1.1 and 1.6 times more than PrPC in wild-type mice, and subsequently intracerebrally inoculated RML and 22L prions into them. The lower expresser showed slightly reduced susceptibility to RML prions but not to 22L prions. The higher expresser exhibited enhanced susceptibility to both prions. No prion transmission barrier was created in Tg(PrP∆preOR)/Prnp 0/0 mice against full-length PrPSc. PrPSc∆preOR accumulated in the brains of infected Tg(PrP∆preOR)/Prnp 0/0 mice less than PrPSc in control wild-type mice, although lower in RML-infected Tg(PrP∆preOR)/Prnp 0/0 mice than in 22L-infected mice. Prion infectivity in infected Tg(PrP∆preOR)/Prnp 0/0 mice was also lower than that in wild-type mice. These results indicate that deletion of residues 25-50 only slightly affects prion susceptibility, the conversion of PrPC into PrPSc, and prion infectivity in a strain-specific way. PrP∆preOR retains residues 23-24 and lacks residues 25-31 in the polybasic region. It is thus conceivable that residues 23-24 rather than 25-31 are important for the polybasic region to support prion pathogenesis. However, other investigators have reported that residues 27-31 not 23-24 are important to support prion pathogenesis. Taken together, the polybasic region might support prion pathogenesis through multiple sites including residues 23-24 and 27-31.


Asunto(s)
Enfermedades por Prión , Proteínas Priónicas/metabolismo , Secuencia de Aminoácidos , Animales , Susceptibilidad a Enfermedades , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Priónicas/genética , Secuencias Repetitivas de Aminoácido , Eliminación de Secuencia
18.
PLoS One ; 9(10): e109737, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25330286

RESUMEN

Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.


Asunto(s)
Enfermedades por Prión/metabolismo , Priones/genética , Priones/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Animales , Encéfalo/metabolismo , Cricetinae , Susceptibilidad a Enfermedades , Masculino , Ratones , Ratones Noqueados , Enfermedades por Prión/genética , Proteínas Priónicas , Priones/química , Proteínas Recombinantes de Fusión/química
19.
Cancer Cell Int ; 14: 56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24976792

RESUMEN

BACKGROUND: In general, growth and differentiation are mutually exclusive but are cooperatively regulated throughout development. Thus, the process of a cell's switching from growth to differentiation is of great importance not only for the development of organisms but also for malignant transformation, in which this process is reversed. We have previously demonstrated using a Dictyostelium model system that the Dictyostelium mitochondrial ribosomal protein S4 (Dd-mrp4) gene expression is essential for the initiation of cell differentiation: Dd-mrp4-null cells fail to initiate differentiation, while the initial step of cell differentiation and the subsequent morphogenesis are markedly enhanced in mrp4 (OE) cells overexpressing the Dd-mrp4 in the extramitochondrial cytoplasm. This raised a possibility that the ectopically enforced expression of the Dd-mrp4 in human cells might inhibit their growth, particularly of malignant tumor cells, by inducing cell differentiation. METHODS: FOUR KINDS OF HUMAN TUMOR CELL LINES WERE TRANSFECTED BY THREE KIND OF VECTOR CONSTRUCTS (THE EMPTY VECTOR: pcDNA3.1 (Mock); pcDNA3.1-rps4 bearing Dictyostelium cytoplasmic ribosomal protein S4; pcDNA3.1-mrp4 bearing Dictyostelium mitochondrial ribosomal protein S4). As controls, four kinds of human primary cultured cells were similarly transfected by the above vector constructs. After transfection, growth kinetics of cells was analyzed using cell viability assay, and also the TUNEL method was used for evaluation of apoptotic cells. RESULTS: Ectopically expressed Dd-mrp4 suppressed cell proliferation through inducing apoptotic cell death specifically in the human lung adenocarcinoma (A549), epithelial cervical cancer (HeLa), hepatocellular carcinoma (HepG2) and colonic carcinoma (Caco-2), but not in primary cultured normal cells, such as human brain microvascular endothelial cells (HBMECs); human umbilical vein endothelial cells (HUVECs) and human normal hepatocytes (hHeps™), with one exception (human cardiac fibloblasts (HCF)). CONCLUSION: The present finding that the ectopically enforced expression of Dd-mrp4 in human several tumor cell lines specifically suppresses their proliferation suggests strongly that the Dd-mrp4 gene derived from Dictyostelium mitochondria may provide a new promising therapeutic strategy for disrupting cell viability pathways in human cancers.

20.
PLoS One ; 9(5): e98032, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24865588

RESUMEN

Severe influenza is characterized by cytokine storm and multiorgan failure with metabolic energy disorders and vascular hyperpermeability. In the regulation of energy homeostasis, the pyruvate dehydrogenase (PDH) complex plays an important role by catalyzing oxidative decarboxylation of pyruvate, linking glycolysis to the tricarboxylic acid cycle and fatty acid synthesis, and thus its activity is linked to energy homeostasis. The present study tested the effects of diisopropylamine dichloroacetate (DADA), a new PDH kinase 4 (PDK4) inhibitor, in mice with severe influenza. Infection of mice with influenza A PR/8/34(H1N1) virus resulted in marked down-regulation of PDH activity and ATP level, with selective up-regulation of PDK4 in the skeletal muscles, heart, liver and lungs. Oral administration of DADA at 12-h intervals for 14 days starting immediately after infection significantly restored PDH activity and ATP level in various organs, and ameliorated disorders of glucose and lipid metabolism in the blood, together with marked improvement of survival and suppression of cytokine storm, trypsin up-regulation and viral replication. These results indicate that through PDK4 inhibition, DADA effectively suppresses the host metabolic disorder-cytokine cycle, which is closely linked to the influenza virus-cytokine-trypsin cycle, resulting in prevention of multiorgan failure in severe influenza.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Enfermedades Metabólicas/tratamiento farmacológico , Insuficiencia Multiorgánica/tratamiento farmacológico , Infecciones por Orthomyxoviridae/complicaciones , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Compuestos de Amonio Cuaternario/uso terapéutico , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Femenino , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedades Metabólicas/enzimología , Enfermedades Metabólicas/etiología , Ratones , Ratones Endogámicos C57BL , Insuficiencia Multiorgánica/enzimología , Insuficiencia Multiorgánica/etiología , Infecciones por Orthomyxoviridae/enzimología , Infecciones por Orthomyxoviridae/virología , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Ácido Pirúvico/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA