Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(9): 2480-2488, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39225545

RESUMEN

Proteomics has emerged as a powerful tool for studying cancer biology, developing diagnostics, and therapies. With the continuous improvement and widespread availability of high-throughput proteomic technologies, the generation of large-scale proteomic data has become more common in cancer research, and there is a growing need for resources that support the sharing and integration of multi-omics datasets. Such datasets require extensive metadata including clinical, biospecimen, and experimental and workflow annotations that are crucial for data interpretation and reanalysis. The need to integrate, analyze, and share these data has led to the development of NCI's Proteomic Data Commons (PDC), accessible at https://pdc.cancer.gov. As a specialized repository within the NCI Cancer Research Data Commons (CRDC), PDC enables researchers to locate and analyze proteomic data from various cancer types and connect with genomic and imaging data available for the same samples in other CRDC nodes. Presently, PDC houses annotated data from more than 160 datasets across 19 cancer types, generated by several large-scale cancer research programs with cohort sizes exceeding 100 samples (tumor and associated normal when available). In this article, we review the current state of PDC in cancer research, discuss the opportunities and challenges associated with data sharing in proteomics, and propose future directions for the resource. SIGNIFICANCE: The Proteomic Data Commons (PDC) plays a crucial role in advancing cancer research by providing a centralized repository of high-quality cancer proteomic data, enriched with extensive clinical annotations. By integrating and cross-referencing with complementary genomic and imaging data, the PDC facilitates multi-omics analyses, driving comprehensive insights, and accelerating discoveries across various cancer types.


Asunto(s)
Nube Computacional , Genómica , National Cancer Institute (U.S.) , Neoplasias , Proteómica , Humanos , Proteómica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/diagnóstico , Genómica/métodos , Estados Unidos
2.
Cancer Cell ; 41(8): 1397-1406, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37582339

RESUMEN

The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigates tumors from a proteogenomic perspective, creating rich multi-omics datasets connecting genomic aberrations to cancer phenotypes. To facilitate pan-cancer investigations, we have generated harmonized genomic, transcriptomic, proteomic, and clinical data for >1000 tumors in 10 cohorts to create a cohesive and powerful dataset for scientific discovery. We outline efforts by the CPTAC pan-cancer working group in data harmonization, data dissemination, and computational resources for aiding biological discoveries. We also discuss challenges for multi-omics data integration and analysis, specifically the unique challenges of working with both nucleotide sequencing and mass spectrometry proteomics data.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Proteómica , Genómica , Neoplasias/genética , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA