RESUMEN
In Guadeloupe, a French overseas territory located in the Eastern Caribbean, infectious and non-infectious diseases, loss of biodiversity, natural disasters and global change threaten the health and well-being of animals, plants, and people. Implementing the "One Health" (OH) approach is crucial to reduce the archipelago's vulnerability to these health threats. However, OH remains underdeveloped in Guadeloupe, hampering efficient and effective intersectoral and transdisciplinary collaborations for disease surveillance and control. A multidisciplinary research group of volunteer researchers working in Guadeloupe, with collective expertise in infectious diseases, undertook a study to identify key attributes for OH operationalization by reviewing past and current local collaborative health initiatives and analyzing how much they mobilized the OH framework. The research group developed and applied an operational OH framework to assess critically collaborative initiatives addressing local health issues. Based on a literature review, a set of 13 opinion-based key criteria was defined. The criteria and associated scoring were measured through semi-directed interviews guided by a questionnaire to critically evaluate four initiatives in animal, human, plant, and environmental health research and epidemiological surveillance. Gaps, levers, and prospects were identified that will help health communities in Guadeloupe envision how to implement the OH approach to better address local health challenges. The methodology is simple, generic, and pragmatic and relies on existing resources. It can be transposed and adapted to other contexts to improve effectiveness and efficiency of OH initiatives, based on lessons-learned of local past or current multi-interdisciplinary and intersectoral initiatives.
Asunto(s)
Desastres Naturales , Salud Única , Animales , Región del Caribe , Guadalupe , Humanos , Indias OccidentalesRESUMEN
Among the emerging fungal diseases threatening food security, the Pseudocercospora fijiensis fungus causing black leaf streak disease of banana is one of the most marked examples of a recent worldwide pandemic on a major crop. We assessed how this pathogen spread throughout the latest invaded region, i.e. Central America and the Caribbean. We retraced its population history combining detailed monitoring information on disease outbreaks and population genetic analyses based on large-scale sampling of P. fijiensis isolates from 121 locations throughout the region. The results first suggested that sexual reproduction was not lost during the P. fijiensis expansion, even in the insular Caribbean context, and a high level of genotypic diversity was maintained in all the populations studied. The population genetic structure of P. fijiensis and historical data showed that two disease waves swept northward and southward in all banana-producing countries in the study area from an initial entry point in Honduras, probably mainly through gradual stepwise spore dispersal. Serial founder events accompanying the northern and southern waves led to the establishment of two different genetic groups. A different population structure was detected on the latest invaded islands (Martinique, Dominica and Guadeloupe), revealing multiple introductions and admixture events that may have been partly due to human activities. The results of this study highlight the need to step up surveillance to limit the spread of other known emerging diseases of banana spread mainly by humans, but also to curb gene flow between established pathogen populations which could increase their evolutionary potential.