Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(13)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37446825

RESUMEN

The present review explores the growing interest in the techniques employed for extracting natural products. It emphasizes the limitations of conventional extraction methods and introduces superior non-conventional alternatives, particularly ultrasound-assisted extraction. Characterization and quantification of bioactive constituents through chromatography coupled with spectroscopy are recommended, while the importance of method development and validation for biomarker quantification is underscored. At present, electrospun fibers provide a versatile platform for incorporating bioactive extracts and have extensive potential in diverse fields due to their unique structural and functional characteristics. Thus, the review also highlights the fabrication of electrospun fibers containing bioactive extracts. The preparation of biologically active extracts under optimal conditions, including the selection of safe solvents and cost-effective equipment, holds promising potential in the pharmaceutical, food, and cosmetic industries. Integration of experimental design into extraction procedures and formulation development is essential for the efficient production of health products. The review explores potential applications of encapsulating natural product extracts in electrospun fibers, such as wound healing, antibacterial activity, and antioxidant properties, while acknowledging the need for further exploration and optimization in this field. The findings discussed in this review are anticipated to serve as a valuable resource for the processing industry, enabling the utilization of affordable and environmentally friendly, natural, and raw materials.


Asunto(s)
Productos Biológicos , Productos Biológicos/farmacología , Productos Biológicos/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Solventes , Extractos Vegetales/química
2.
Int J Pharm ; 562: 258-270, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30910635

RESUMEN

Due to their ultrafine network structures, electrospun nanofibres have been potentially used for wound application. In order to develop a desired wound dressing material, shellac (SHL) was blended with polyvinyl pyrrolidone (PVP). Monolaurin (ML), which is a natural antimicrobial lipid, was incorporated into the SHL-PVP blended fibres to prevent delayed wound healing resulting from microbial infection. A full factorial design with three replicated centre points was employed in order to determine the main and interaction effects of various factors including SHL ratio in SHL-PVP blended solution, ML content and applied voltage on the multiple responses such as morphology, surface wettability, absorbency and mechanical properties. According to the results, an increase in the PVP content could lead to a significant increase in tensile strength and elongation. In addition, the presence of PVP contributed to an improvement in the drug loading capacity and dissolution rate. The fabricated fibres loaded with ML exhibited an excellent activity against Staphylococcus aureus and Candida albicans, and also provided an enhanced ability in the cell adhesion. Therefore, SHL-PVP blended fibres loaded with ML might be effectively used for application in wound healing.


Asunto(s)
Antiinfecciosos/administración & dosificación , Lauratos/administración & dosificación , Monoglicéridos/administración & dosificación , Nanofibras/administración & dosificación , Povidona/administración & dosificación , Resinas de Plantas/administración & dosificación , Candida albicans/efectos de los fármacos , Adhesión Celular , Composición de Medicamentos/métodos , Diseño de Fármacos , Fibroblastos , Humanos , Staphylococcus aureus/efectos de los fármacos , Humectabilidad , Cicatrización de Heridas
3.
Asian J Pharm Sci ; 13(5): 409-414, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32104415

RESUMEN

The aim of this study was to develop the water compatible form of coconut oil through nano-emulsification. The effect of different types and amounts of surfactants on the physical characteristics of nanoemulsions containing coconut oil was investigated. Coconut oil nanoemulsions containing varied amounts of surfactants including polyethylene glycol octyl phenyl ether (PGO), polyoxyethylene sorbitan monostearate (POS), polyethylene glycol hydrogenated castor oil (PHC), sodium lauryl sulfate (SLS) and poloxamer 407 (PLX) were formulated and comparatively evaluated for their physical properties. The results showed that the coconut oil nanoemulsions using PGO, POS and PHC as surfactants exhibited low percent creaming index indicating excellent stability, while those containing SLS and PLX demonstrated the higher percent creaming index suggesting lesser physical stability. The droplet sizes of nanoemulsions consisting of 5% (w/w) PGO, POS and PHC were 22.843, 4.458 and 0.162 µm, respectively. Thus, coconut oil nanoemulsions with the smallest size could be obtained when PHC was applied. Furthermore, the droplet size of nanoemulsions decreased from 33 µm to less than 200 nm with an increase in the amount of PHC from 1% to 10% (w/w). Additionally, the properties of coconut oil based nanoemulsions containing PHC were not changed through temperature cycling test. From these results, it was suggested that the fabrication of stable coconut oil nanoemulsions with small particle size could be easily achieved by using 5% (w/w) PHC as a surfactant. The knowledge gained from the study might provide the basic guideline for the fabrication of stable nanoemulsions for food, cosmetic and pharmaceutical fields in the future.

4.
Asian J Pharm Sci ; 13(5): 459-471, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32104420

RESUMEN

The aim of this study was to elucidate the optimized fabrication factors influencing the formation and properties of shellac (SHL) nanofibers loaded with an antimicrobial monolaurin (ML). The main and interaction effects of formulation and process parameters including SHL content (35%-40% w/w), ML content (1%-3% w/w), applied voltage (9-27 kV) and flow rate (0.4-1.2 ml/h) on the characteristic of nanofibers were investigated through a total of 19 experiments based on a full factorial design with three replicated center points. As a result, the SHL content was the major parameter affecting fiber diameter. Another response result revealed that the SHL content would be also the most significant negative impact on amount of beads. An increase in the concentration of SHL leaded to a reduction in the amount of beads. From the results of characterization study, it was proved that ML might be entrapped between the chains of SHL during the electrospinning process exhibiting an excellent encapsulation. According to the response surface area, small (~488 nm) and beadless (~0.48) fibers were obtained with the SHL and ML contents of 37.5% and 1.1% w/w respectively, at the applied voltage of 18 kV and the flow rate of 0.8 ml/h. In addition, the results of the kill-kinetic studies showed that SHL nanofibers loaded with ML exhibited an excellent antibacterial activity against Staphylococcus aureus, while Escherichia coli was less affected due to the hydrophilic structure of the its outer membrane. ML also exerted an antifungal activity by reducing the number of Candida albicans colonies. Based on their structural and antimicrobial properties, SHL nanofibers containing ML could be potentially used as a medicated dressing for wound treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA