Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 288(47): 33738-33744, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24114836

RESUMEN

Irisin was recently identified as a putative myokine that is induced by exercise. Studies suggest that it is produced by cleavage of the FNDC5 (fibronectin domain-containing protein 5) receptor; irisin corresponds to the extracellular receptor ectodomain. Data suggesting that irisin stimulates white-to-brown fat conversion have led to the hypothesis that it does so by binding an unknown receptor, thus functioning as a myokine. As brown fat promotes energy dissipation, myokines that elicit the transformation of white to brown fat have potentially profound benefits in the treatment of obesity and metabolic disorders. Understanding the molecular basis for such exercise-induced phenomena is thus of considerable interest. Moreover, FNDC5-like receptors are highly conserved and have been shown to be critical for neuronal development. However, the structural and molecular mechanisms utilized by these proteins are currently unknown. Here, we describe the crystal structure and biochemical characterization of the FNDC5 ectodomain, corresponding to the irisin myokine. The 2.28 Å structure shows that irisin consists of an N-terminal fibronectin III (FNIII)-like domain attached to a flexible C-terminal tail. Strikingly, the FNIII-like domain forms a continuous intersubunit ß-sheet dimer, previously unobserved for any FNIII protein. Biochemical data confirm that irisin is a dimer and that dimerization is unaffected by glycosylation. This finding suggests a possible mechanism for receptor activation by the irisin domain as a preformed myokine dimer ligand or as a paracrine or autocrine dimerization module on FNDC5-like receptors.


Asunto(s)
Fibronectinas/química , Multimerización de Proteína/fisiología , Cristalografía por Rayos X , Fibronectinas/genética , Fibronectinas/metabolismo , Glicosilación , Humanos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
2.
J Biol Chem ; 288(50): 35801-11, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24158439

RESUMEN

Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-ß. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg(62), from an adjacent subunit. Notably, Arg(62) must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens.


Asunto(s)
Bacillus subtilis/enzimología , Biocatálisis , Retroalimentación Fisiológica , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/química , Multimerización de Proteína , Subunidades de Proteína/química , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Estructura Cuaternaria de Proteína
3.
Proc Natl Acad Sci U S A ; 110(26): 10586-91, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23754405

RESUMEN

The spatial and temporal control of Filamenting temperature sensitive mutant Z (FtsZ) Z-ring formation is crucial for proper cell division in bacteria. In Escherichia coli, the synthetic lethal with a defective Min system (SlmA) protein helps mediate nucleoid occlusion, which prevents chromosome fragmentation by binding FtsZ and inhibiting Z-ring formation over the nucleoid. However, to perform its function, SlmA must be bound to the nucleoid. To deduce the basis for this chromosomal requirement, we performed biochemical, cellular, and structural studies. Strikingly, structures show that SlmA dramatically distorts DNA, allowing it to bind as an orientated dimer-of-dimers. Biochemical data indicate that SlmA dimer-of-dimers can spread along the DNA. Combined structural and biochemical data suggest that this DNA-activated SlmA oligomerization would prevent FtsZ protofilament propagation and bundling. Bioinformatic analyses localize SlmA DNA sites near membrane-tethered chromosomal regions, and cellular studies show that SlmA inhibits FtsZ reservoirs from forming membrane-tethered Z rings. Thus, our combined data indicate that SlmA DNA helps block Z-ring formation over chromosomal DNA by forming higher-order protein-nucleic acid complexes that disable FtsZ filaments from coalescing into proper structures needed for Z-ring creation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas del Citoesqueleto/química , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Multimerización de Proteína
4.
Nucleic Acids Res ; 41(3): 1998-2008, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23241389

RESUMEN

Escherichia coli can rapidly switch to the metabolism of l-arabinose and d-xylose in the absence of its preferred carbon source, glucose, in a process called carbon catabolite repression. Transcription of the genes required for l-arabinose and d-xylose consumption is regulated by the sugar-responsive transcription factors, AraC and XylR. E. coli represents a promising candidate for biofuel production through the metabolism of hemicellulose, which is composed of d-xylose and l-arabinose. Understanding the l-arabinose/d-xylose regulatory network is key for such biocatalyst development. Unlike AraC, which is a well-studied protein, little is known about XylR. To gain insight into XylR function, we performed biochemical and structural studies. XylR contains a C-terminal AraC-like domain. However, its N-terminal d-xylose-binding domain contains a periplasmic-binding protein (PBP) fold with structural homology to LacI/GalR transcription regulators. Like LacI/GalR proteins, the XylR PBP domain mediates dimerization. However, unlike LacI/GalR proteins, which dimerize in a parallel, side-to-side manner, XylR PBP dimers are antiparallel. Strikingly, d-xylose binding to this domain results in a helix to strand transition at the dimer interface that reorients both DNA-binding domains, allowing them to bind and loop distant operator sites. Thus, the combined data reveal the ligand-induced activation mechanism of a new family of DNA-binding proteins.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Factores de Transcripción/química , ADN Bacteriano/metabolismo , ADN Bacteriano/ultraestructura , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Represoras Lac/química , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/química , Factores de Transcripción/metabolismo , Xilosa/química , Xilosa/metabolismo
5.
Int J Biol Macromol ; 46(5): 478-86, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20346967

RESUMEN

The aim of this study was to determine if the dietary benefits of bioflavonoids are linked to the inhibition of ATP synthase. We studied the inhibitory effect of 17 bioflavonoid compounds on purified F1 or membrane bound F1Fo E. coli ATP synthase. We found that the extent of inhibition by bioflavonoid compounds was variable. Morin, silymarin, baicalein, silibinin, rimantadin, amantidin, or, epicatechin resulted in complete inhibition. The most potent inhibitors on molar scale were morin (IC50 approximately 0.07 mM)>silymarin (IC50 approximately 0.11 mM)>baicalein (IC50 approximately 0.29 mM)>silibinin (IC50 approximately 0.34 mM)>rimantadin (IC50 approximately 2.0 mM)>amantidin (IC50 approximately 2.5 mM)>epicatechin (IC50 approximately 4.0 mM). Inhibition by hesperidin, chrysin, kaempferol, diosmin, apigenin, genistein, or rutin was partial in the range of 40-60% and inhibition by galangin, daidzein, or luteolin was insignificant. The main skeleton, size, shape, geometry, and position of functional groups on inhibitors played important role in the effective inhibition of ATP synthase. In all cases inhibition was found fully reversible and identical in both F1Fo membrane preparations and isolated purified F1. ATPase and growth assays suggested that the bioflavonoid compounds used in this study inhibited F1-ATPase as well as ATP synthesis nearly equally, which signifies a link between the beneficial effects of dietary bioflavonoids and their inhibitory action on ATP synthase.


Asunto(s)
Dieta , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Flavonoides/farmacología , ATPasas de Translocación de Protón/antagonistas & inhibidores , Sitios de Unión , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Cristalografía por Rayos X , Medios de Cultivo/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/crecimiento & desarrollo , Flavonoides/química , Glucosa/farmacología , Unión Proteica/efectos de los fármacos , ATPasas de Translocación de Protón/aislamiento & purificación , Ácido Succínico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...