Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
In Vivo ; 38(4): 1557-1570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936927

RESUMEN

BACKGROUND/AIM: This study examined the effects of tocotrienols (TT) in conjunction with statin on glucose homeostasis, bone microstructure, gut microbiome, and systemic and liver inflammatory markers in obese C57BL/6J mice. MATERIALS AND METHODS: Forty male C57BL/6J mice were fed a high-fat diet (HFD) and assigned into four groups in a 2 (no statin vs. 120 mg statin/kg diet)×2 (no TT vs. 400 mg TT/kg diet) factorial design for 14 weeks. RESULTS: Statin and TT improved glucose tolerance only when each was given alone, and only statin supplementation decreased insulin resistance. Consistently, only statin supplementation decreased serum insulin levels and HOMA-IR. Pancreatic insulin was also increased with statin treatment. Statin and TT, alone or in combination, reduced the levels of serum IL-6, but only TT attenuated the increased serum leptin levels induced by a HFD. Statin supplementation increased bone area/total area and connectivity density at LV-4, while TT supplementation increased bone area/total area and trabecular number, but decreased trabecular separation at the distal femur. Statin supplementation, but not TT, reduced hepatic inflammatory cytokine gene expression. Neither TT supplementation nor statin supplementation statistically altered microbiome species evenness or richness. However, they altered the relative abundance of certain microbiome species. Most notably, both TT and statin supplementation increased the relative abundance of Lachnospiraceae UCG-006. CONCLUSION: TT and statin collectively benefit bone microstructure, glucose homeostasis, and microbial ecology in obese mice. Such changes may be, in part, associated with suppression of inflammation in the host.


Asunto(s)
Huesos , Dieta Alta en Grasa , Suplementos Dietéticos , Microbioma Gastrointestinal , Homeostasis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Obesidad , Tocotrienoles , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Tocotrienoles/farmacología , Tocotrienoles/administración & dosificación , Ratones , Homeostasis/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Masculino , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Dieta Alta en Grasa/efectos adversos , Bixaceae/química , Ratones Obesos , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Glucosa/metabolismo , Ratones Endogámicos C57BL , Resistencia a la Insulina , Glucemia , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Biomarcadores , Carotenoides
2.
Physiol Rev ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696337

RESUMEN

A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (pO2) drops and Mb offloads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR) , and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation, but also to serve as an O2-sensor that modulates intracellular pO2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Herein, we review historic and emerging views related to the physiological roles for Mb, and present working models illustrating the possible importance of interactions between Mb, gases, and small molecule metabolites in regulation of cell signaling and bioenergetics.

3.
Pediatr Res ; 95(3): 647-659, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37935884

RESUMEN

BACKGROUND: Fetal growth restriction (FGR) increases risk for development of obesity and type 2 diabetes. Using a mouse model of FGR, we tested whether metabolic outcomes were exacerbated by high-fat diet challenge or associated with fecal microbial taxa. METHODS: FGR was induced by maternal calorie restriction from gestation day 9 to 19. Control and FGR offspring were weaned to control (CON) or 45% fat diet (HFD). At age 16 weeks, offspring underwent intraperitoneal glucose tolerance testing, quantitative MRI body composition assessment, and energy balance studies. Total microbial DNA was used for amplification of the V4 variable region of the 16 S rRNA gene. Multivariable associations between groups and genera abundance were assessed using MaAsLin2. RESULTS: Adult male FGR mice fed HFD gained weight faster and had impaired glucose tolerance compared to control HFD males, without differences among females. Irrespective of weaning diet, adult FGR males had depletion of Akkermansia, a mucin-residing genus known to be associated with weight gain and glucose handling. FGR females had diminished Bifidobacterium. Metabolic changes in FGR offspring were associated with persistent gut microbial changes. CONCLUSION: FGR results in persistent gut microbial dysbiosis that may be a therapeutic target to improve metabolic outcomes. IMPACT: Fetal growth restriction increases risk for metabolic syndrome later in life, especially if followed by rapid postnatal weight gain. We report that a high fat diet impacts weight and glucose handling in a mouse model of fetal growth restriction in a sexually dimorphic manner. Adult growth-restricted offspring had persistent changes in fecal microbial taxa known to be associated with weight, glucose homeostasis, and bile acid metabolism, particularly Akkermansia, Bilophilia and Bifidobacteria. The gut microbiome may represent a therapeutic target to improve long-term metabolic outcomes related to fetal growth restriction.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retardo del Crecimiento Fetal , Humanos , Femenino , Adulto , Masculino , Lactante , Retardo del Crecimiento Fetal/metabolismo , Dieta Alta en Grasa , Aumento de Peso , Glucosa , Desarrollo Fetal
4.
Biomolecules ; 13(7)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37509174

RESUMEN

Myoglobin (Mb) interaction with the outer mitochondrial membrane (OMM) promotes oxygen (O2) release. However, comprehensive molecular details on specific contact regions of the OMM with oxygenated (oxy-) and deoxygenated (deoxy-)Mb are missing. We used molecular dynamics (MD) simulations to explore the interaction of oxy- and deoxy-Mb with the membrane lipids of the OMM in two lipid compositions: (a) a typical whole membrane on average, and (b) specifically the cardiolipin-enriched cristae region (contact site). Unrestrained relaxations showed that on average, both the oxy- and deoxy-Mb established more stable contacts with the lipids typical of the cristae contact site, then with those of the average OMM. However, in steered detachment simulations, deoxy-Mb clung more tightly to the average OMM, and oxy-Mb strongly preferred the contact sites of the OMM. The MD simulation analysis further indicated that a non-specific binding, mediated by local electrostatic interactions, existed between charged or polar groups of Mb and the membrane, for stable interaction. To the best of our knowledge, this is the first computational study providing the molecular details of the direct Mb-mitochondria interaction that assisted in distinguishing the preferred localization of oxy- and deoxy-Mb on the OMM. Our findings support the existing experimental evidence on Mb-mitochondrial association and shed more insights on Mb-mediated O2 transport for cellular bioenergetics.


Asunto(s)
Membranas Mitocondriales , Mioglobina , Mioglobina/química , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo , Simulación de Dinámica Molecular
5.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499106

RESUMEN

Previous research has indicated that various metabolites belonging to phenolic acids (PAs), produced by gut microflora through the breakdown of polyphenols, help in promoting bone development and protecting bone from degeneration. Results have also suggested that G-protein-coupled receptor 109A (GPR109A) functions as a receptor for those specific PAs such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA). Indeed, HA has a molecular structural similarity with nicotinic acid (niacin) which has been shown previously to bind to GPR109A receptor and to mediate antilipolytic effects; however, the binding pocket and the structural nature of the interaction remain to be recognized. In the present study, we employed a computational strategy to elucidate the molecular structural determinants of HA binding to GPR109A and GPR109B homology models in understanding the regulation of osteoclastogenesis. Based on the docking and molecular dynamics simulation studies, HA binds to GPR109A similarly to niacin. Specifically, the transmembrane helices 3, 4 and 6 (TMH3, TMH4 and TMH6) and Extracellular loop 1 and 2 (ECL1 and ECL2) residues of GRP109A; R111 (TMH3), K166 (TMH4), ECL2 residues; S178 and S179, and R251 (TMH6), and residues of GPR109B; Y87, Y86, S91 (ECL1) and C177 (ECL2) contribute for HA binding. Simulations and Molecular Mechanics Poisson-Boltzmann solvent accessible area (MM-PBSA) calculations reveal that HA has higher affinity for GPR109A than for GPR109B. Additionally, in silico mutation analysis of key residues have disrupted the binding and HA exited out from the GPR109A protein. Furthermore, measurements of time-resolved circular dichroism spectra revealed that there are no major conformational changes in the protein secondary structure on HA binding. Taken together, our findings suggest a mechanism of interaction of HA with both GPR109A and GPR109B receptors.


Asunto(s)
Niacina , Receptores Nicotínicos , Niacina/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Hipuratos , Análisis Espectral
6.
Mol Nutr Food Res ; 66(22): e2200112, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36112603

RESUMEN

SCOPE: Metabolic syndrome (MetS) alters the gut microbial ecology and increases the risk of cardiovascular disease. This study investigates whether strawberry consumption reduces vascular complications in an animal model of MetS and identifies whether this effect is associated with changes in the composition of gut microbes. METHODS AND RESULTS: Seven-week-old male mice consume diets with 10% (C) or 60% kcal from fat (high-fat diet fed mice; HF) for 12 weeks and subgroups are fed a 2.35% freeze-dried strawberry supplemented diet (C+SB or HF+SB). This nutritional dose is equivalent to ≈160 g of strawberry. After 12 weeks treatment, vascular inflammation is enhanced in HF versus C mice as shown by an increased monocyte binding to vasculature, elevated serum chemokines, and increased mRNA expression of inflammatory molecules. However, strawberry supplementation suppresses vascular inflammation in HF+SB versus HF mice. Metabolic variables, blood pressure, and indices of vascular function were similar among the groups. Further, the abundance of opportunistic microbe is decreased in HF+SB. Importantly, circulating chemokines are positively associated with opportunistic microbes and negatively associated with the commensal microbes (Bifidobacterium and Facalibaculum). CONCLUSION: Dietary strawberry decreases the abundance of opportunistic microbe and this is associated with a decrease in vascular inflammation resulting from MetS.


Asunto(s)
Fragaria , Microbioma Gastrointestinal , Síndrome Metabólico , Masculino , Ratones , Animales , Fragaria/química , Síndrome Metabólico/etiología , Síndrome Metabólico/tratamiento farmacológico , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Inflamación
7.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077057

RESUMEN

The gut microbiota plays a critical role in energy homeostasis and its dysbiosis is associated with obesity. Maternal high-fat diet (HFD) and ß-adrenergic stimuli alter the gut microbiota independently; however, their collective regulation is not clear. To investigate the combined effect of these factors on offspring microbiota, 20-week-old offspring from control diet (17% fat)- or HFD (45% fat)-fed dams received an injection of either vehicle or ß3-adrenergic agonist CL316,243 (CL) for 7 days and then cecal contents were collected for bacterial community profiling. In a follow-up study, a separate group of mice were exposed to either 8 °C or 30 °C temperature for 7 days and blood serum and cecal contents were used for metabolome profiling. Both maternal diet and CL modulated the gut bacterial community structure and predicted functional profiles. Particularly, maternal HFD and CL increased the Firmicutes/Bacteroidetes ratio. In mice exposed to different temperatures, the metabolome profiles clustered by treatment in both the cecum and serum. Identified metabolites were enriched in sphingolipid and amino acid metabolism in the cecum and in lipid and energy metabolism in the serum. In summary, maternal HFD altered offspring's response to CL and altered microbial composition and function. An independent experiment supported the effect of thermogenic challenge on the bacterial function through metabolome change.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Animales , Dieta Alta en Grasa/efectos adversos , Estudios de Seguimiento , Metaboloma , Ratones , Ratones Endogámicos C57BL
8.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35955898

RESUMEN

Myoglobin (Mb), besides its roles as an oxygen (O2) carrier/storage protein and nitric oxide NO scavenger/producer, may participate in lipid trafficking and metabolite binding. Our recent findings have shown that O2 is released from oxy-Mb upon interaction with lactate (LAC, anerobic glycolysis end-product). Since pyruvate (PYR) is structurally similar and metabolically related to LAC, we investigated the effects of PYR (aerobic glycolysis end-product) on Mb using isothermal titration calorimetry, circular dichroism, and O2-kinetic studies to evaluate PYR affinity toward Mb and to compare the effects of PYR and LAC on O2 release kinetics of oxy-Mb. Similar to LAC, PYR interacts with both oxy- and deoxy-Mb with a 1:1 stoichiometry. Time-resolved circular dichroism spectra revealed that there are no major conformational changes in the secondary structures of oxy- or deoxy-Mb during interactions with PYR or LAC. However, we found contrasting results with respect to binding affinities and substrate preference, where PYR has higher affinity toward deoxy-Mb when compared with LAC (which prefers oxy-Mb). Furthermore, PYR interaction with oxy-Mb releases a significantly lower amount of O2 than LAC. Taken together, our findings support the hypothesis that glycolytic end-products play a distinctive role in the Mb-rich tissues by serving as novel regulators of O2 availability, and/or by impacting other activities related to oxy-/deoxy-Mb toggling in resting vs. exercised or metabolically activated conditions.


Asunto(s)
Mioglobina , Oxígeno , Cinética , Mioglobina/química , Oxígeno/metabolismo , Ácido Pirúvico , Relación Estructura-Actividad , Termodinámica
9.
Physiol Rep ; 10(13): e15363, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35778808

RESUMEN

In humans and animal models, Cesarean section (C-section) has been associated with alterations in the taxonomic structure of the gut microbiome. These changes in microbiota populations are hypothesized to impact immune, metabolic, and behavioral/neurologic systems and others. It is not clear if birth mode inherently changes the microbiome, or if C-section effects are context-specific and involve interactions with environmental and other factors. To address this and control for potential confounders, cecal microbiota from ~3 week old mice born by C-section (n = 16) versus natural birth (n = 23) were compared under matched conditions for housing, cross-fostering, diet, sex, and genetic strain. A total of 601 unique species were detected across all samples. Alpha diversity richness (i.e., how many species within sample; Chao1) and evenness/dominance (i.e., Shannon, Simpson, Inverse Simpson) metrics revealed no significant differences by birth mode. Beta diversity (i.e., differences between samples), as estimated with Bray-Curtis dissimilarities and Aitchison distances (using log[x + 1]-transformed counts), was also not significantly different (Permutational Multivariate ANOVA [PERMANOVA]). Only the abundance of Lachnoclostridium [Clostridium] scindens was found to differ using a combination of statistical methods (ALDEx2, DESeq2), being significantly higher in C-section mice. This microbe has been implicated in secondary bile acid production and regulation of glucocorticoid metabolism to androgens. From our results and the extant literature we conclude that C-section does not inherently lead to large-scale shifts in gut microbiota populations, but birth mode could modulate select bacteria in a context-specific manner: For example, involving factors associated with pre-, peri-, and postpartum environments, diet or host genetics.


Asunto(s)
Ácidos y Sales Biliares , Cesárea , Animales , Ciego , Clostridium , Femenino , Glucocorticoides , Ratones , Embarazo
10.
J Mol Model ; 28(8): 237, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900600

RESUMEN

Acifran is a well-known agonist of G-protein-coupled receptor protein, namely GPR109A. Acifran is primarily used in the treatment of dyslipidemia, myocardial infractions, and atherosclerosis in humans due to its lower vascular and metabolic side effects. However, experimental and computational studies on interaction sites of acifran with GPR proteins (GPR109A and GPR109B) are lacking. Our computational studies using docking and molecular dynamics simulation revealed that acifran binds distinctly to both GPR109A and GPR109B, but with lower affinity to the latter. The weak binding of acifran-GPR109B is mainly due to the presence of residues S91 and N94 in ECL1 and I178 amino acid in ECL2 region of GPR109B, whereas R111 and R251 residues in TMH3 and TMH6 are crucial for GPR109A-acifran complex stability. Additionally, molecular mechanics/Poisson-Boltzmann solvent accessible surface area (MM/PBSA) analysis revealed that both GPR109A- and GPR109B-acifran complexes are energetically stable with lower calculated binding free energy values for the latter. Energy-minimized structures of GPR109A-acifran and GPR109B-acifran complex.


Asunto(s)
Furanos , Receptores Acoplados a Proteínas G , Humanos , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
11.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563138

RESUMEN

Myoglobin (Mb)-mediated oxygen (O2) delivery and dissolved O2 in the cytosol are two major sources that support oxidative phosphorylation. During intense exercise, lactate (LAC) production is elevated in skeletal muscles as a consequence of insufficient intracellular O2 supply. The latter results in diminished mitochondrial oxidative metabolism and an increased reliance on nonoxidative pathways to generate ATP. Whether or not metabolites from these pathways impact Mb-O2 associations remains to be established. In the present study, we employed isothermal titration calorimetry, O2 kinetic studies, and UV-Vis spectroscopy to evaluate the LAC affinity toward Mb (oxy- and deoxy-Mb) and the effect of LAC on O2 release from oxy-Mb in varying pH conditions (pH 6.0-7.0). Our results show that LAC avidly binds to both oxy- and deoxy-Mb (only at acidic pH for the latter). Similarly, in the presence of LAC, increased release of O2 from oxy-Mb was detected. This suggests that with LAC binding to Mb, the structural conformation of the protein (near the heme center) might be altered, which concomitantly triggers the release of O2. Taken together, these novel findings support a mechanism where LAC acts as a regulator of O2 management in Mb-rich tissues and/or influences the putative signaling roles for oxy- and deoxy-Mb, especially under conditions of LAC accumulation and lactic acidosis.


Asunto(s)
Mioglobina , Oxígeno , Cinética , Ácido Láctico , Mioglobina/química , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , Análisis Espectral , Termodinámica
12.
Pediatr Obes ; 17(9): e12921, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35478493

RESUMEN

BACKGROUND: Maternal obesity is an important determinant of offspring obesity risk, which may be mediated via changes in the infant microbiome. OBJECTIVES: We examined infant faecal microbiome, short-chain fatty acids (SCFA), and maternal human milk oligosaccharides (HMO) in mothers with overweight/obese body mass index (BMI) (OW) compared with normal weight (NW) (Clinicaltrials.gov NCT01131117). METHODS: Infant stool samples at 1, 6, and 12 months were analysed by 16S rRNA sequencing. Maternal (BODPOD) and infant (quantitative nuclear magnetic resonance [QMR]) adiposity were measured. HMOs at 2 months postpartum and faecal SCFAs at 1 month were also assessed. Statistical analyses included multivariable and mixed linear models for assessment of microbiome diversity, composition, and associations of taxonomic abundance with metabolic and anthropometric variables. RESULTS: At 1 month, offspring of women with obesity had lower abundance of SCFA-producing bacteria (including Ruminococcus and Turicibacter) and lower faecal butyric acid levels. Lachnospiraceae abundance was lower in OW group at 6 months, and infant fat mass was negatively associated with the levels of Sutterella. Gradient boosting machine models indicated that higher α-diversity and specific microbial taxa at 1 month predicted elevated adiposity at 12 months with overall accuracy of 76.5%. Associations between maternal HMO concentrations and infant bacterial taxa differed between NW and OW groups. CONCLUSIONS: Elevated maternal BMI is associated with relative depletion of butyrate-producing microbes and faecal butyrate in the early infant faecal microbiome. Overall microbial richness may aid in prediction of elevated adiposity in later infancy.


Asunto(s)
Microbioma Gastrointestinal , Obesidad Materna , Bacterias/genética , Butiratos , Femenino , Microbioma Gastrointestinal/genética , Humanos , Lactante , Leche Humana/metabolismo , Obesidad/epidemiología , Obesidad/metabolismo , Oligosacáridos , Embarazo , ARN Ribosómico 16S
13.
Mol Nutr Food Res ; 66(8): e2100784, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120277

RESUMEN

SCOPE: In diabetes, endothelial inflammation and dysfunction play a pivotal role in the development of vascular disease. This study investigates the effect of dietary blueberries on vascular complications and gut microbiome in diabetic mice. METHODS AND RESULTS: Seven-week-old diabetic db/db mice consume a standard diet (db/db) or a diet supplemented with 3.8% freeze-dried blueberry (db/db+BB) for 10 weeks. Control db/+ mice are fed a standard diet (db/+). Vascular inflammation is assessed by measuring monocyte binding to vasculature and inflammatory markers. Isometric tension procedures are used to assess mesenteric artery function. db/db mice exhibit enhanced vascular inflammation and reduced endothelial-dependent vasorelaxation as compared to db/+ mice, but these are improved in db/db+BB mice. Blueberry supplementation reduces the expression of NOX4 and IκKß in the aortic vessel and vascular endothelial cells (ECs) isolated from db/db+BB compared to db/db mice. The blueberry metabolites serum reduces glucose and palmitate induced endothelial inflammation in mouse aortic ECs. Further, blueberry supplementation increases commensal microbes and modulates the functional potential of gut microbes in diabetic mice. CONCLUSION: Dietary blueberry suppresses vascular inflammation, attenuates arterial endothelial dysfunction, and supports the growth of commensal microbes in diabetic mice. The endothelial-specific vascular benefits of blueberries are mediated through NOX4 signaling.


Asunto(s)
Arándanos Azules (Planta) , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Microbioma Gastrointestinal , NADPH Oxidasa 4 , Animales , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Angiopatías Diabéticas/dietoterapia , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/microbiología , Dieta , Células Endoteliales/metabolismo , Endotelio Vascular , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , NADPH Oxidasa 4/metabolismo
14.
Bioinform Biol Insights ; 15: 11779322211056122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34866904

RESUMEN

The transmembrane G-protein coupled receptor GPR109A has been previously shown to function as a receptor for niacin in mediating antilipolytic effects. Although administration of high doses of niacin has shown beneficial effects on lipid metabolism, however, it is often accompanied by disturbing side effects such as flushing, liver damage, glucose intolerance, or gastrointestinal problems. Thus, it is important to understand niacin-GPR109A interactions, which can be beneficial for the development of alternate drugs having antilipolytic effects with less or no side effects. To get into the structural insights on niacin binding to GPR109A, we have performed 100 nanoseconds long all-atom MD simulations of five niacin-GPR109A complexes (automatically docked pose 0, and randomly placed niacin in poses 1 to 4 in the receptor crevice) and analyzed using binding free energy calculations and H-bond analysis. Steered MD simulations were used to get an average force for niacin translocation between the bulk and the external crevice of the wild type and mutant (N86Y, W91 S, S178I, and triple mutant of all three residues) GPR109A receptors, as well as GPR109B (as a control that does not bind niacin). The H-bond analysis revealed that TMH3 residue R111 interacts with niacin in a total of 4 (poses 0 to 3) complexes, while residues C177, S178, and S179 contact niacin in complex pose 4, and all these complexes were energetically stable. According to steered MD simulations, all the GPR109A mutants and GPR109B required greater force than that of wild-type GPR109A to translocate in the external crevice, suggesting increased sterical obstacles. Thus, the residues N86 (at the junction of TMH2/ECL2), W91 (ECL2), R111 (TMH3), and ECL3 residues (C177, S178, S179) play an important role for optimal routing of niacin entry and to bind GPR109A.

15.
Nutrients ; 13(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34579172

RESUMEN

Maternal body composition, gestational weight gain (GWG) and diet quality influence offspring obesity risk. While the gut microbiome is thought to play a crucial role, it is understudied in pregnancy. Using a longitudinal pregnancy cohort, maternal anthropometrics, body composition, fecal microbiome and dietary intake were assessed at 12, 24 and 36 weeks of gestation. Fecal samples (n = 101, 98 and 107, at each trimester, respectively) were utilized for microbiome analysis via 16S rRNA amplicon sequencing. Data analysis included alpha- and beta-diversity measures and assessment of compositional changes using MaAsLin2. Correlation analyses of serum metabolic and anthropometric markers were performed against bacterial abundance and predicted functional pathways. α-diversity was unaltered by pregnancy stage or maternal obesity status. Actinobacteria, Lachnospiraceae, Akkermansia, Bifidobacterium, Streptococcus and Anaerotuncus abundances were associated with gestation stage. Maternal obesity status was associated with increased abundance of Lachnospiraceae, Bilophila, Dialister and Roseburia. Maternal BMI, fat mass, triglyceride and insulin levels were positively associated with Bilophila. Correlations of bacterial abundance with diet intake showed that Ruminococcus and Paraprevotella were associated with total fat and unsaturated fatty acid intake, while Collinsella and Anaerostipes were associated with protein intake. While causal relationships remain unclear, collectively, these findings indicate pregnancy- and maternal obesity-dependent interactions between dietary factors and the maternal gut microbiome.


Asunto(s)
Composición Corporal , Dieta , Microbioma Gastrointestinal , Fenómenos Fisiologicos Nutricionales Maternos , Adulto , Composición Corporal/fisiología , Peso Corporal , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Ganancia de Peso Gestacional/fisiología , Humanos , Embarazo , ARN Ribosómico 16S/genética
16.
Physiol Rep ; 9(18): e15031, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34545692

RESUMEN

Skeletal muscle anatomy and physiology are sexually dimorphic but molecular underpinnings and muscle-specificity are not well-established. Variances in metabolic health, fitness level, sedentary behavior, genetics, and age make it difficult to discern inherent sex effects in humans. Therefore, mice under well-controlled conditions were used to determine female and male (n = 19/sex) skeletal muscle fiber type/size and capillarity in superficial and deep gastrocnemius (GA-s, GA-d), soleus (SOL), extensor digitorum longus (EDL), and plantaris (PLT), and transcriptome patterns were also determined (GA, SOL). Summed muscle weight strongly correlated with lean body mass (r2  = 0.67, p < 0.0001, both sexes). Other phenotypes were muscle-specific: e.g., capillarity (higher density, male GA-s), myofiber size (higher, male EDL), and fiber type (higher, lower type I and type II prevalences, respectively, in female SOL). There were broad differences in transcriptomics, with >6000 (GA) and >4000 (SOL) mRNAs differentially-expressed by sex; only a minority of these were shared across GA and SOL. Pathway analyses revealed differences in ribosome biology, transcription, and RNA processing. Curation of sexually dimorphic muscle transcripts shared in GA and SOL, and literature datasets from mice and humans, identified 11 genes that we propose are canonical to innate sex differences in muscle: Xist, Kdm6a, Grb10, Oas2, Rps4x (higher, females) and Ddx3y, Kdm5d, Irx3, Wwp1, Aldh1a1, Cd24a (higher, males). These genes and those with the highest "sex-biased" expression in our study do not contain estrogen-response elements (exception, Greb1), but a subset are proposed to be regulated through androgen response elements. We hypothesize that innate muscle sexual dimorphism in mice and humans is triggered and then maintained by classic X inactivation (Xist, females) and Y activation (Ddx3y, males), with coincident engagement of X encoded (Kdm6a) and Y encoded (Kdm5d) demethylase epigenetic regulators that are complemented by modulation at some regions of the genome that respond to androgen.


Asunto(s)
Músculo Esquelético/metabolismo , Caracteres Sexuales , Transcriptoma , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microvasos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/citología
17.
Am J Physiol Endocrinol Metab ; 321(1): E63-E79, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33969704

RESUMEN

Myoglobin (Mb) is a regulator of O2 bioavailability in type I muscle and heart, at least when tissue O2 levels drop. Mb also plays a role in regulating cellular nitric oxide (NO) pools. Robust binding of long-chain fatty acids and long-chain acylcarnitines to Mb, and enhanced glucose metabolism in hearts of Mb knockout (KO) mice, suggest additional roles in muscle intermediary metabolism and fuel selection. To evaluate this hypothesis, we measured energy expenditure (EE), respiratory exchange ratio (RER), body weight gain and adiposity, glucose tolerance, and insulin sensitivity in Mb knockout (Mb-/-) and wild-type (WT) mice challenged with a high-fat diet (HFD, 45% of calories). In males (n = 10/genotype) and females (n = 9/genotype) tested at 5-6, 11-12, and 17-18 wk, there were no genotype effects on RER, EE, or food intake. RER and EE during cold (10°C, 72 h), and glucose and insulin tolerance, were not different compared with within-sex WT controls. At ∼18 and ∼19 wk of age, female Mb-/- adiposity was ∼42%-48% higher versus WT females (P = 0.1). Transcriptomics analyses (whole gastrocnemius, soleus) revealed few consistent changes, with the notable exception of a 20% drop in soleus transferrin receptor (Tfrc) mRNA. Capillarity indices were significantly increased in Mb-/-, specifically in Mb-rich soleus and deep gastrocnemius. The results indicate that Mb loss does not have a major impact on whole body glucose homeostasis, EE, RER, or response to a cold challenge in mice. However, the greater adiposity in female Mb-/- mice indicates a sex-specific effect of Mb KO on fat storage and feed efficiency.NEW & NOTEWORTHY The roles of myoglobin remain to be elaborated. We address sexual dimorphism in terms of outcomes in response to the loss of myoglobin in knockout mice and perform, for the first time, a series of comprehensive metabolic studies under conditions in which fat is mobilized (high-fat diet, cold). The results highlight that myoglobin is not necessary and sufficient for maintaining oxidative metabolism and point to alternative roles for this protein in muscle and heart.


Asunto(s)
Músculo Esquelético/metabolismo , Miocardio/metabolismo , Mioglobina/fisiología , Adiposidad , Animales , Peso Corporal , Dieta Alta en Grasa , Metabolismo Energético , Ácidos Grasos/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/irrigación sanguínea , Mioglobina/deficiencia , Mioglobina/genética , Oxidación-Reducción , Fenotipo , Caracteres Sexuales
18.
Am J Physiol Endocrinol Metab ; 321(1): E47-E62, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33969705

RESUMEN

Myoglobin (Mb) regulates O2 bioavailability in muscle and heart as the partial pressure of O2 (Po2) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher Po2 and converting NO2- to NO as Po2 falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced Po2, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb-/-) on BAT phenotype [lipid droplets, mitochondrial markers uncoupling protein 1 (UCP1) and cytochrome C oxidase 4 (Cox4), transcriptomics] in male and female mice fed a high-fat diet (HFD, 45% of energy, ∼13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was a higher prevalence of mid-large sized droplets in Mb-/-. COX4 protein expression was significantly reduced in Mb-/- BAT, and a suite of metabolic/NO/stress/hypoxia transcripts were lower. All of these Mb-/--associated differences were most apparent in females. The new conceptual model, and results derived from Mb-/- mice, suggest a role for Mb in BAT metabolic regulation, in part through sexually dimorphic systems and NO signaling. This possibility requires further validation in light of significant mouse-to-mouse variability of BAT Mb mRNA and protein abundances in wild-type mice and lower expression relative to muscle and heart.NEW & NOTEWORTHY Myoglobin confers the distinct red color to muscle and heart, serving as an oxygen-binding protein in oxidative fibers. Less attention has been paid to brown fat, a thermogenic tissue that also expresses myoglobin. In a mouse knockout model lacking myoglobin, brown fat had larger fat droplets and lower markers of mitochondrial oxidative metabolism, especially in females. Gene expression patterns suggest a role for myoglobin as an oxygen/nitric oxide-sensor that regulates cellular metabolic and signaling pathways.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Mioglobina/fisiología , Adipocitos Marrones/fisiología , Tejido Adiposo Pardo/química , Tejido Adiposo Pardo/ultraestructura , Animales , Diferenciación Celular , Células Cultivadas , Dieta Alta en Grasa , Complejo IV de Transporte de Electrones/genética , Femenino , Expresión Génica , Lípidos/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/fisiología , Mioglobina/deficiencia , Mioglobina/genética , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , ARN Mensajero/análisis
19.
Commun Biol ; 4(1): 53, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420329

RESUMEN

The G protein-coupled receptor 109 A (GPR109A) is robustly expressed in osteoclastic precursor macrophages. Previous studies suggested that GPR109A mediates effects of diet-derived phenolic acids such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA) on promoting bone formation. However, the role of GPR109A in metabolic bone homeostasis and osteoclast differentiation has not been investigated. Using densitometric, bone histologic and molecular signaling analytic methods, we uncovered that bone mass and strength were significantly higher in tibia and spine of standard rodent diet weaned 4-week-old and 6-month-old GPR109A gene deletion (GPR109A-/-) mice, compared to their wild type controls. Osteoclast numbers in bone and in ex vivo bone marrow cell cultures were significantly decreased in GPR109A-/- mice compared to wild type controls. In accordance with these data, CTX-1 in bone marrow plasma and gene expression of bone resorption markers (TNFα, TRAP, Cathepsin K) were significantly decreased in GPR109A-/- mice, while on the other hand, P1NP was increased in serum from both male and female GPR109A-/- mice compared to their respective controls. GPR109A deletion led to suppressed Wnt/ß-catenin signaling in osteoclast precursors to inhibit osteoclast differentiation and activity. Indeed, HA and 3-3-PPA substantially inhibited RANKL-induced GPR109A expression and Wnt/ß-catenin signaling in osteoclast precursors and osteoclast differentiation. Resultantly, HA significantly inhibited bone resorption and increased bone mass in wild type mice, but had no additional effects on bone in GPR109A-/- mice compared with their respective untreated control mice. These results suggest an important role for GPR109A during osteoclast differentiation and bone resorption mediating effects of HA and 3-3-PPA on inhibiting bone resorption during skeletal development.


Asunto(s)
Resorción Ósea/prevención & control , Hipuratos/farmacología , Osteogénesis/efectos de los fármacos , Fenilpropionatos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Femenino , Microbioma Gastrointestinal , Hipuratos/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenilpropionatos/uso terapéutico , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Vía de Señalización Wnt
20.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G157-G169, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32508155

RESUMEN

The gut microbiome has the potential to create or modify xenometabolites (i.e., nonhost-derived metabolites) through de novo synthesis or modification of exogenous and endogenous compounds. While there are isolated examples of xenometabolites influencing host health and disease, wide-scale characterization of these metabolites remains limited. We developed a metabolomics platform ("XenoScan") using liquid chromatography-mass spectrometry to characterize a range of known and suspected xenometabolites and their derivatives. This assay currently applies authentic standards for 190 molecules, enriched for metabolites of microbial origin. As a proof-of-principle, we characterized the cecal content xenometabolomics profile in adult male lean Sprague-Dawley (LSD) and University of California, Davis type 2 diabetes mellitus (UCD-T2DM) rats at different stages of diabetes. These results were correlated to specific bacterial species generated via shotgun metagenomic sequencing. UCD-T2DM rats had a unique xenometabolite profile compared with LSD rats, regardless of diabetes status, suggesting that at least some of the variation is associated with host genetics. Furthermore, modeling approaches revealed that several xenometabolites discriminated UCD-T2DM rats at early stages of diabetes versus those at 3 mo postdiabetes onset. Several xenometabolite hubs correlated with specific bacterial species in both LSD and UCD-T2DM rats. For example, indole-3-propionic acid negatively correlated with species within the Oscillibacter genus in UCD-T2DM rats considered to be prediabetic or recently diagnosed diabetic, in contrast to gluconic acid and trimethylamine, which were positively correlated with Oscillibacter species. The application of a xenometabolite-enriched metabolomics assay in relevant milieus will enable rapid identification of a wide variety of gut-derived metabolites, their derivatives, and their potential biochemical origins of xenometabolites in relationship to host gastrointestinal microbial ecology.NEW & NOTEWORTHY We debut a liquid chromatography-mass spectrometry (LC/MS) platform called the XenoScan, which is a metabolomics platform for xenometabolites (nonself-originating metabolites). This assay has 190 in-house standards with the majority enriched for microbe-derived metabolites. As a proof-of-principle, we used the XenoScan to discriminate genetic differences from cecal samples associated with different rat lineages, in addition to characterizing diabetes progression in rat model of type 2 diabetes. Complementing microbial sequencing data with xenometabolites uncovered novel microbial metabolism in targeted organisms.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/fisiología , Metabolómica , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Ciego/microbiología , Masculino , Redes y Vías Metabólicas , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...