Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 377(6614): 1555-1561, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36173852

RESUMEN

Hydrocarbon separation relies on energy-intensive distillation. Membrane technology can offer an energy-efficient alternative but requires selective differentiation of crude oil molecules with rapid liquid transport. We synthesized multiblock oligomer amines, which comprised a central amine segment with two hydrophobic oligomer blocks, and used them to fabricate hydrophobic polyamide nanofilms by interfacial polymerization from self-assembled vesicles. These polyamide nanofilms provide transport of hydrophobic liquids more than 100 times faster than that of conventional hydrophilic counterparts. In the fractionation of light crude oil, manipulation of the film thickness down to ~10 nanometers achieves permeance one order of magnitude higher than that of current state-of-the-art hydrophobic membranes while retaining comparable size- and class-based separation. This high permeance can markedly reduce plant footprint, which expands the potential for using membranes made of ultrathin nanofilms in crude oil fractionation.

2.
Science ; 376(6597): 1105-1110, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35653467

RESUMEN

The design of materials and their manufacture into membranes that can handle industrial conditions and separate complex nonaqueous mixtures are challenging. We report a versatile strategy to fabricate polytriazole membranes with 10-nanometer-thin selective layers containing subnanometer channels for the separation of hydrocarbons. The process involves the use of the classical nonsolvent-induced phase separation method and thermal cross-linking. The membrane selectivity can be tuned to the lower end of the typical nanofiltration range (200 to 1000 gram mole-1). The polytriazole membrane can enrich up to 80 to 95% of the hydrocarbon content with less than 10 carbon atoms (140 gram mole-1). These membranes preferentially separate paraffin over aromatic components, making them suitable for integration in hybrid distillation systems for crude oil fractionation.

3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493653

RESUMEN

Membrane-based technologies have a tremendous role in water purification and desalination. Inspired by biological proteins, artificial water channels (AWCs) have been proposed to overcome the permeability/selectivity trade-off of desalination processes. Promising strategies exploiting the AWC with angstrom-scale selectivity have revealed their impressive performances when embedded in bilayer membranes. Herein, we demonstrate that self-assembled imidazole-quartet (I-quartet) AWCs are macroscopically incorporated within industrially relevant reverse osmosis membranes. In particular, we explore the best combination between I-quartet AWC and m-phenylenediamine (MPD) monomer to achieve a seamless incorporation of AWC in a defect-free polyamide membrane. The performance of the membranes is evaluated by cross-flow filtration under real reverse osmosis conditions (15 to 20 bar of applied pressure) by filtration of brackish feed streams. The optimized bioinspired membranes achieve an unprecedented improvement, resulting in more than twice (up to 6.9 L⋅m-2⋅h-1⋅bar-1) water permeance of analogous commercial membranes, while maintaining excellent NaCl rejection (>99.5%). They show also excellent performance in the purification of low-salinity water under low-pressure conditions (6 bar of applied pressure) with fluxes up to 35 L⋅m-2⋅h-1 and 97.5 to 99.3% observed rejection.

4.
ACS Appl Mater Interfaces ; 13(37): 44824-44832, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34510885

RESUMEN

Pharmaceutical, chemical, and food industries are actively implementing membrane nanofiltration modules in their processes to separate valuable products and recover solvents. Interfacial polymerization (IP) is the most widely used method to produce thin-film composite membranes for nanofiltration and reverse osmosis processes. Although membrane processes are considered green and environmentally friendly, membrane fabrication has still to be further developed in such direction. For instance, the emission of volatile solvents during membrane production in the industry has to be carefully controlled for health reasons. Greener solvents are being proposed for phase-separation membrane manufacture. For the IP organic phase, the proposition of greener alternatives is in an early stage. In this work, we demonstrate the preparation of a high-performing composite membrane employing zero vapor pressure and naturally extracted oleic acid as the IP organic phase. Its long hydrophobic chain ensures intrinsic low volatility and acid monomer dissolution, while the polar head induces a unique self-assembly structure during the film formation. Membranes prepared by this technique were selective for small molecules with a molecular weight cutoff of 650 g mol-1 and a high permeance of ∼57 L m-2 h-1 bar-1.

5.
Nat Nanotechnol ; 16(2): 190-196, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169009

RESUMEN

Inspired by biological proteins, artificial water channels (AWCs) can be used to overcome the performances of traditional desalination membranes. Their rational incorporation in composite polyamide provides an example of biomimetic membranes applied under representative reverse osmosis desalination conditions with an intrinsically high water-to-salt permeability ratio. The hybrid polyamide presents larger voids and seamlessly incorporates I-quartet AWCs for highly selective transport of water. These biomimetic membranes can be easily scaled for industrial standards (>m2), provide 99.5% rejection of NaCl or 91.4% rejection of boron, with a water flux of 75 l m-2 h-1 at 65 bar and 35,000 ppm NaCl feed solution, representative of seawater desalination. This flux is more than 75% higher than that observed with current state-of-the-art membranes with equivalent solute rejection, translating into an equivalent reduction of the membrane area for the same water output and a roughly 12% reduction of the required energy for desalination.

6.
Nat Commun ; 11(1): 5882, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208753

RESUMEN

Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.

7.
Faraday Discuss ; 209(0): 303-314, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29974100

RESUMEN

When building artificial nanochannels, having a scalable robust platform with controlled morphology is important, as well as having the option for final functionalization of the channels for the selective transport of water and proteins. We have previously developed asymmetric membranes that have a surface layer of very sharp pore size distribution, surface charge and pore functionalization. Here, a more complex bioinspired platform is reported. Hierarchical isotropic porous structures with spherical micrometer-sized cavities, interconnected by hexagonally ordered nanochannels, were prepared based on the phase separation of polystyrene-b-poly(t-butyl acrylate) block copolymers, following a nucleation and growth mechanism. The structure was imaged by scanning electron microscopy, which demonstrated a high density of ordered nanochannels. The hexagonal order formed by the self-assembly in solution was confirmed by small-angle X-ray scattering. The structure evolution was investigated by time-resolved grazing-incidence small-angle X-ray scattering. The assembled hydrophobic hierarchical structure was then converted to a hydrophilic structure by acid hydrolysis, leading to nanochannels covered by carboxylic groups and therefore convenient for water transport.


Asunto(s)
Acrilatos/química , Nanotecnología , Poliestirenos/química , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Porosidad , Dispersión del Ángulo Pequeño , Propiedades de Superficie , Difracción de Rayos X
8.
Sci Adv ; 4(5): eaat0713, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29756039

RESUMEN

Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene-b-poly(t-butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

9.
Adv Mater ; 28(43): 9504-9511, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27615453

RESUMEN

A novel electrocatalytic and microfiltration polymeric hollow fiber is fabricated for simultaneous recovery of energy (H2 ) and clean fresh water from wastewater, hence addressing two grand challenges facing society in the current century (i.e., providing adequate supplies of clean fresh water and energy as the world's population increases).

10.
ACS Appl Mater Interfaces ; 7(7): 3960-73, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25650589

RESUMEN

Hydroxyl functionalized polytriazole-co-polyoxadiazole (PTA-POD) copolymers have been synthesized and cast as promising highly thermally stable, chemically resistant, and antiorganic/biological fouling porous substrates for the fabrication of thin-film composite (TFC) forward osmosis (FO) membranes. The roles of PTA/POD ratios in the membrane substrates, TFC layers, and FO membrane performance have been investigated. This study demonstrates that the substrate fabricated from the copolymer containing 40 mol % PTA is optimal for the TFC membranes. Compared to the POD-TFC membrane, the 40 mol % PTA-TFC membrane exhibits a remarkable decrease in structural parameter (S) of more than 3.3 times. In addition, the 40 mol % PTA-TFC membrane is characterized by high water fluxes of 24.9 LMH and 47.2 LMH using 1 M NaCl as the draw solution and DI water as the feed under FO and pressure retarded osmosis (PRO) modes, respectively. Compared to a polysulfone (PSU) supported TFC-FO membrane under similar fabrication conditions, the 40% mol PTA-TFC membrane shows better FO performance and enhanced antifouling properties on the support (lower protein binding propensity and improved bacterial inhibition). Moreover, the performance of the 40 mol % PTA supported TFC-FO membrane can be improved to 37.5 LMH (FO mode)/78.4 LMH (PRO mode) and potentially higher by optimizing the support morphology, the TFC formation, and the post-treatment process. Hence, the use of newly developed hydroxyl functionalized polytriazole-co-polyoxadiazole copolymers may open up a new class of material for FO processes.


Asunto(s)
Oxadiazoles/química , Polímeros/química , Triazoles/química , Purificación del Agua/instrumentación , Membranas Artificiales , Ósmosis , Polímeros/síntesis química , Porosidad
11.
J Phys Chem B ; 116(30): 9082-8, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22765226

RESUMEN

Solution rheology and electrospinning performance of an aromatic polyimide based on 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 3,3'-dimethyl-4,4'-diaminodiphenylmethane (MMDA) was studied. Analyzing the dependence of specific viscosity on polymer concentration enabled the evaluation of the transition from semidilute unentangled to semidilute entangled regime at 18.3%. Modification of chain interactions in solution is also reflected in a sudden increase of flow energetic barrier and consistency index values from 3.56 to 10.28 kJ/mol and 0.19 to 1.09 Pa·s(n), respectively. In the concentration domain of 15-20% the relaxation time is enhanced from 0.48 to 1.07 s, as a consequence of less chain mobility, which can be associated with the elastic character of the polyimide solution, useful for obtaining fibers. Scanning electron microscopy (SEM) and polarized light microscopy (PLM) images indicate that at 25% beaded fibers are obtained, while at 30% bead-free fibers are formed having the diameter comprised between 0.56 and 0.85 µm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA