Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Rep ; 14(1): 9188, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649733

This study assessed Rhodotorula paludigena CM33's growth and ß-carotene production in a 22-L bioreactor for potential use as an aquatic animal feed supplement. Optimizing the feed medium's micronutrient concentration for high-cell-density fed-batch cultivation using glucose as the carbon source yielded biomass of 89.84 g/L and ß-carotene concentration of 251.64 mg/L. Notably, using sucrose as the carbon source in feed medium outperforms glucose feeds, resulting in a ß-carotene concentration of 285.00 mg/L with a similar biomass of 87.78 g/L. In the fed-batch fermentation using Sucrose Feed Medium, R. paludigena CM33 exhibited high biomass production rates (Qx) of 0.91 g/L.h and remarkable ß-carotene production rates (Qp) of 2.97 mg/L.h. In vitro digestibility assays showed that R. paludigena CM33, especially when cultivated using sucrose, enhances protein digestibility affirming its suitability as an aquatic feed supplement. Furthermore, R. paludigena CM33's nutrient-rich profile and probiotic potential make it an attractive option for aquatic nutrition. This research highlights the importance of cost-effective carbon sources in large-scale ß-carotene production for aquatic animal nutrition.


Biomass , Rhodotorula , beta Carotene , Rhodotorula/metabolism , beta Carotene/metabolism , beta Carotene/biosynthesis , Animals , Animal Feed , Fermentation , Bioreactors , Sucrose/metabolism , Glucose/metabolism , Culture Media/chemistry , Batch Cell Culture Techniques/methods , Aquatic Organisms/metabolism
2.
Int J Biol Macromol ; 161: 917-926, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32553968

Commercial- and laboratory modified- cationic cassava starches and their composites with magnetic particles were examined for characteristics and separation efficiency. Scanning electron micrographs showed that cationic starch with an increasing degree of substitution (DS) value (0.0180 to 0.91) showed greater clumped polyhedral granules and became markedly enlarged with disintegrated boundaries. Zeta potential analysis revealed that the increase in the DS value in cationic starches resulted in an increase in positive charge. The maximum harvesting efficiency of 92.86 ± 0.46% was achieved when commercial cationic starch with DS 0.040 at 1.0 g L-1 was added to the Chlorella sp. solution. The maximum recovery capacity (10.20 ± 0.16 g DCW g starch-1) was recorded by using commercial cationic starch with DS 0.040 at a lower dosage of 0.1 g L-1. Their composites showed lower separation efficiency than the commercial cationic starches. The results suggest that the commercial cationic cassava starch with 0.040 DS shows great potential as a flocculant for algal separation. This first report of using commercial cationic cassava starch as a flocculant provides a low cost and convenient process to separate algal cells from the culture medium. Moreover, uncontaminated magnetic particle biomass allows for wide range of algal utilization in food and pharmaceutical biotechnologies.


Cations/chemistry , Manihot/chemistry , Microalgae/chemistry , Starch/chemistry , Biomass , Biotechnology/methods , Flocculation , Magnetics/methods
...