Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
J Clin Invest ; 134(9)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38690737

Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-ß response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.


Membrane Proteins , Nociceptors , Animals , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nociceptors/metabolism , Ganglia, Spinal/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Inflammation/genetics , Inflammation/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pain/metabolism , Pain/genetics , Signal Transduction , Male
2.
Immunity ; 57(4): 815-831, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38599172

The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.


Immunity, Innate , Sensory Receptor Cells , Immunity, Innate/physiology , Neuroimmunomodulation/physiology , Homeostasis
4.
Cell ; 187(6): 1508-1526.e16, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38442711

Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.


Ganglia, Spinal , Sensory Receptor Cells , Single-Cell Gene Expression Analysis , Animals , Mice , Ganglia, Spinal/cytology , Sensory Receptor Cells/cytology , Skin/innervation
5.
Proc Natl Acad Sci U S A ; 121(11): e2322574121, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38451947

The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.


Calcitonin Gene-Related Peptide , Neuroimmunomodulation , Calcitonin Gene-Related Peptide/genetics , Receptor Activity-Modifying Protein 1/genetics , Receptors, Calcitonin Gene-Related Peptide , Adaptive Immunity
6.
J Allergy Clin Immunol ; 153(5): 1344-1354.e5, 2024 May.
Article En | MEDLINE | ID: mdl-38336257

BACKGROUND: Atopic dermatitis skin lesions exhibit increased infiltration by basophils. Basophils produce IL-4, which plays an important role in the pathogenesis of atopic dermatitis. OBJECTIVE: We sought to determine the role of basophils in a mouse model of antigen-driven allergic skin inflammation. METHODS: Wild-type mice, mice with selective and inducible depletion of basophils, and mice expressing Il4-driven enhanced green fluorescent protein were subjected to epicutaneous sensitization with ovalbumin or saline. Sensitized skin was examined by histology for epidermal thickening. Cells were analyzed for surface markers and intracellular expression of enhanced green fluorescent protein by flow cytometry. Gene expression was evaluated by real-time reverse transcription-quantitative PCR. RESULTS: Basophils were important for epidermal hyperplasia, dermal infiltration by CD4+ T cells, mast cells, and eosinophils in ovalbumin-sensitized mouse skin and for the local and systemic TH2 response to epicutaneous sensitization. Moreover, basophils were the major source of IL-4 in epicutaneous-sensitized mouse skin and promote the ability of dendritic cells to drive TH2 polarization of naive T cells. CONCLUSION: Basophils play an important role in the development of allergic skin inflammation induced by cutaneous exposure to antigen in mice.


Basophils , Dermatitis, Atopic , Interleukin-4 , Ovalbumin , Th2 Cells , Animals , Basophils/immunology , Mice , Interleukin-4/immunology , Interleukin-4/genetics , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Ovalbumin/immunology , Th2 Cells/immunology , Skin/immunology , Skin/pathology , Mice, Inbred C57BL , Mice, Inbred BALB C , Disease Models, Animal , Dendritic Cells/immunology , Mice, Transgenic , Mast Cells/immunology
7.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38280374

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Complement C3 , Intestinal Mucosa , Microbiota , Animals , Humans , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Neutrophils , Complement C3/metabolism , Stromal Cells/metabolism
8.
Pain ; 165(2): 392-403, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37903298

ABSTRACT: Dental pulp tissue is densely innervated by afferent fibers of the trigeminal ganglion. When bacteria cause dental decay near the pulpal tissue, a strong neuronal and immune response occurs, creating pulpitis, which is associated with severe pain and pulp tissue damage. Neuroimmune interactions have the potential to modulate both the pain and pathological outcome of pulpitis. We first investigated the role of the neuropeptide calcitonin gene-related peptide (CGRP), released from peptidergic sensory afferents, in dental pain and immune responses by using Calca knockout (Calca -/- ) and wild-type (Calca +/+ ) mice, in a model of pulpitis by creating a mechanical exposure of the dental pulp horn. We found that the neuropeptide CGRP, facilitated the recruitment of myeloid cells into the pulp while also increasing spontaneous pain-like behavior 20% to 25% at an early time point. Moreover, when we depleted neutrophils and monocytes, we found that there was 20% to 30% more sensory afferent loss and increased presence of bacteria in deeper parts of the tissue, whereas there was a significant reduction in mechanical pain response scores compared with the control group at a later time point. Overall, we showed that there is a crosstalk between peptidergic neurons and neutrophils in the pulp, modulating the pain and inflammatory outcomes of the disease.


Neuropeptides , Pulpitis , Mice , Animals , Calcitonin Gene-Related Peptide , Dental Pulp , Neurons , Pain , Neurons, Afferent/physiology
9.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Article En | MEDLINE | ID: mdl-37995657

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Peptide Hydrolases , Pruritus , Receptor, PAR-1 , Staphylococcal Infections , Staphylococcus aureus , Animals , Humans , Mice , Peptide Hydrolases/metabolism , Pruritus/microbiology , Receptor, PAR-1/metabolism , Staphylococcus aureus/enzymology , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/physiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology
10.
J Endod ; 2023 Sep 09.
Article En | MEDLINE | ID: mdl-37678750

INTRODUCTION: During pulpitis, as bacteria penetrate deeper into the dentin and pulp tissue, a pulpal innate immune response is initiated. However, the kinetics of the immune response, how this relates to bacterial infiltration during pulpitis and an understanding of the types of immune cells in the pulp is limited. METHODS: Dental pulp exposure in the molars of mice was used as an animal model of pulpitis. To investigate the kinetics of immune response, pulp tissue was collected from permanent molars at different time points after injury (baseline, day 1, and day 7). Flow cytometry analysis of CD45+ leukocytes, including macrophages, neutrophils monocytes, and T cells, was performed. 16S in situ hybridization captured bacterial invasion of the pulp, and immunohistochemistry for F4/80 investigated spatial and morphological changes of macrophages during pulpitis. Data were analyzed using two-way ANOVA with Tukey's multiple comparisons. RESULTS: Bacteria mostly remained close to the injury site, with some expansion towards noninjured pulp horns. We found that F4/80+ macrophages were the primary immune cell population in the healthy pulp. Upon injury, CD11b + Ly6Ghigh neutrophils and CD11b + Ly6GintLy6Cint monocytes constituted 70-90% of all immune populations up to 7 days after injury. Even though there was a slight increase in T cells at day 7, myeloid cells remained the main drivers of the immune response during the seven-day time period. CONCLUSIONS: As bacteria proliferate within the pulp chamber, innate immune cells, including macrophages, neutrophils, and monocytes, predominate as the major immune populations, with some signs of transitioning to an adaptive immune response.

11.
bioRxiv ; 2023 Aug 08.
Article En | MEDLINE | ID: mdl-37609192

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use chronic two-photon imaging in awake mice and single-cell transcriptomics to demonstrate that in addition to these roles, the ChP is a complex immune organ that regulates brain inflammation. In a mouse meningitis model, neutrophils and monocytes accumulated in ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process, including the discovery of epithelial cells that transiently specialized to nurture immune cells, coordinate their recruitment, survival, and differentiation, and ultimately, control the opening/closing of the ChP brain barrier. Collectively, we provide a new conceptual understanding and comprehensive roadmap of neuroinflammation at the ChP brain barrier.

12.
Cell Mol Immunol ; 20(11): 1259-1269, 2023 11.
Article En | MEDLINE | ID: mdl-37336989

The gastrointestinal tract is densely innervated by the peripheral nervous system and populated by the immune system. These two systems critically coordinate the sensations of and adaptations to dietary, microbial, and damaging stimuli from the external and internal microenvironment during tissue homeostasis and inflammation. The brain receives and integrates ascending sensory signals from the gut and transduces descending signals back to the gut via autonomic neurons. Neurons regulate intestinal immune responses through the action of local axon reflexes or through neuronal circuits via the gut-brain axis. This neuroimmune crosstalk is critical for gut homeostatic maintenance and disease resolution. In this review, we discuss the roles of distinct types of gut-innervating neurons in the modulation of intestinal mucosal immunity. We will focus on the molecular mechanisms governing how different immune cells respond to neural signals in host defense and inflammation. We also discuss the therapeutic potential of strategies targeting neuroimmune crosstalk for intestinal diseases.


Immune System , Neurons , Humans , Neurons/physiology , Inflammation , Homeostasis , Cell Physiological Phenomena
13.
Cell Host Microbe ; 31(4): 593-603.e7, 2023 04 12.
Article En | MEDLINE | ID: mdl-37054679

The opportunistic pathogen Staphylococcus aureus frequently colonizes the inflamed skin of people with atopic dermatitis (AD) and worsens disease severity by promoting skin damage. Here, we show, by longitudinally tracking 23 children treated for AD, that S. aureus adapts via de novo mutations during colonization. Each patient's S. aureus population is dominated by a single lineage, with infrequent invasion by distant lineages. Mutations emerge within each lineage at rates similar to those of S. aureus in other contexts. Some variants spread across the body within months, with signatures of adaptive evolution. Most strikingly, mutations in capsule synthesis gene capD underwent parallel evolution in one patient and across-body sweeps in two patients. We confirm that capD negativity is more common in AD than in other contexts, via reanalysis of S. aureus genomes from 276 people. Together, these findings highlight the importance of the mutation level when dissecting the role of microbes in complex disease.


Dermatitis, Atopic , Staphylococcal Infections , Child , Humans , Staphylococcus aureus/genetics , Skin , Mutation
14.
Nature ; 615(7953): 660-667, 2023 03.
Article En | MEDLINE | ID: mdl-36890237

Pathogen infection causes a stereotyped state of sickness that involves neuronally orchestrated behavioural and physiological changes1,2. On infection, immune cells release a 'storm' of cytokines and other mediators, many of which are detected by neurons3,4; yet, the responding neural circuits and neuro-immune interaction mechanisms that evoke sickness behaviour during naturalistic infections remain unclear. Over-the-counter medications such as aspirin and ibuprofen are widely used to alleviate sickness and act by blocking prostaglandin E2 (PGE2) synthesis5. A leading model is that PGE2 crosses the blood-brain barrier and directly engages hypothalamic neurons2. Here, using genetic tools that broadly cover a peripheral sensory neuron atlas, we instead identified a small population of PGE2-detecting glossopharyngeal sensory neurons (petrosal GABRA1 neurons) that are essential for influenza-induced sickness behaviour in mice. Ablating petrosal GABRA1 neurons or targeted knockout of PGE2 receptor 3 (EP3) in these neurons eliminates influenza-induced decreases in food intake, water intake and mobility during early-stage infection and improves survival. Genetically guided anatomical mapping revealed that petrosal GABRA1 neurons project to mucosal regions of the nasopharynx with increased expression of cyclooxygenase-2 after infection, and also display a specific axonal targeting pattern in the brainstem. Together, these findings reveal a primary airway-to-brain sensory pathway that detects locally produced prostaglandins and mediates systemic sickness responses to respiratory virus infection.


Blood-Brain Barrier , Brain , Dinoprostone , Nasopharynx , Orthomyxoviridae Infections , Sensory Receptor Cells , Animals , Humans , Mice , Behavior, Animal , Blood-Brain Barrier/metabolism , Brain/metabolism , Brain Stem/physiopathology , Dinoprostone/metabolism , Drinking , Eating , Influenza, Human/complications , Influenza, Human/metabolism , Movement , Nasopharynx/innervation , Orthomyxoviridae/pathogenicity , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Sensory Receptor Cells/metabolism , Survival Rate
15.
Nature ; 615(7952): 472-481, 2023 03.
Article En | MEDLINE | ID: mdl-36859544

The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.


Brain , Meninges , Meningitis, Bacterial , Neuroimmunomodulation , Humans , Brain/immunology , Brain/microbiology , Calcitonin Gene-Related Peptide/metabolism , Meninges/immunology , Meninges/microbiology , Meninges/physiopathology , Pain/etiology , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Meningitis, Bacterial/complications , Meningitis, Bacterial/immunology , Meningitis, Bacterial/microbiology , Meningitis, Bacterial/pathology , Streptococcus agalactiae/immunology , Streptococcus agalactiae/pathogenicity , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/pathogenicity , Nociceptors/metabolism , Receptor Activity-Modifying Protein 1/metabolism , Macrophages/immunology , Macrophages/metabolism
16.
Neuron ; 111(8): 1222-1240.e9, 2023 04 19.
Article En | MEDLINE | ID: mdl-36917977

Mitochondrial dysfunction and axon loss are hallmarks of neurologic diseases. Gasdermin (GSDM) proteins are executioner pore-forming molecules that mediate cell death, yet their roles in the central nervous system (CNS) are not well understood. Here, we find that one GSDM family member, GSDME, is expressed by both mouse and human neurons. GSDME plays a role in mitochondrial damage and axon loss. Mitochondrial neurotoxins induced caspase-dependent GSDME cleavage and rapid localization to mitochondria in axons, where GSDME promoted mitochondrial depolarization, trafficking defects, and neurite retraction. Frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS)-associated proteins TDP-43 and PR-50 induced GSDME-mediated damage to mitochondria and neurite loss. GSDME knockdown protected against neurite loss in ALS patient iPSC-derived motor neurons. Knockout of GSDME in SOD1G93A ALS mice prolonged survival, ameliorated motor dysfunction, rescued motor neuron loss, and reduced neuroinflammation. We identify GSDME as an executioner of neuronal mitochondrial dysfunction that may contribute to neurodegeneration.


Amyotrophic Lateral Sclerosis , Mice , Animals , Humans , Amyotrophic Lateral Sclerosis/metabolism , Gasdermins , Mice, Knockout , Motor Neurons/metabolism , Axons/metabolism
17.
bioRxiv ; 2023 Feb 03.
Article En | MEDLINE | ID: mdl-36778396

Canonically, complement is a serum-based host defense system that protects against systemic microbial invasion. Little is known about the production and function of complement components on mucosal surfaces. Here we show gut complement component 3 (C3), central to complement function, is regulated by the composition of the microbiota in healthy humans and mice, leading to host-specific gut C3 levels. Stromal cells in intestinal lymphoid follicles (LFs) are the predominant source of intestinal C3. During enteric infection with Citrobacter rodentium or enterohemorrhagic Escherichia coli, luminal C3 levels increase significantly and are required for protection. C. rodentium is remarkably more invasive to the gut epithelium of C3-deficient mice than of wild-type mice. In the gut, C3-mediated phagocytosis of C. rodentium functions to clear pathogens. Our study reveals that variations in gut microbiota determine individuals’ intestinal mucosal C3 levels, dominantly produced by LF stromal cells, which directly correlate with protection against enteric infection. Highlights: Gut complement component 3 (C3) is induced by the microbiome in healthy humans and mice at a microbiota-specific level.Gut stromal cells located in intestinal lymphoid follicles are a major source of luminal C3 During enteric infections with Citrobacter rodentium or enterohemorrhagic Escherichia coli, gut luminal C3 levels increase and are required for protection. C. rodentium is significantly more invasive of the gut epithelium in C3-deficient mice when compared to WT mice. In the gut, C3-mediated opsonophagocytosis of C. rodentium functions to clear pathogens.

18.
Cell ; 186(3): 607-620.e17, 2023 02 02.
Article En | MEDLINE | ID: mdl-36640762

Tissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury. Mechanistically, our data reveal that the cytokine interleukin-17A (IL-17A) released by commensal-specific Th17 cells upon injury directly signals to sensory neurons via IL-17 receptor A, the transcription of which is specifically upregulated in injured neurons. Collectively, our work reveals that in the context of tissue damage, preemptive immunity to the microbiota can rapidly bridge biological systems by directly promoting neuronal repair, while also identifying IL-17A as a major determinant of this fundamental process.


Interleukin-17 , Microbiota , Nerve Regeneration , Th17 Cells , Axons , Nerve Regeneration/physiology , Sensory Receptor Cells , Animals , Mice , Th17 Cells/cytology
19.
bioRxiv ; 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38234748

The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a novel mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide Calcitonin Gene-Related Peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo . Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8 + T lymphocytes induced by skin commensal colonization. Neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology. Significance statement: Multisystem coordination at barrier surfaces is critical for optimal tissue functions and integrity, in response to microbial and environmental cues. In this study, we identified a novel neuroimmune crosstalk mechanism between the sensory nervous system and the adaptive immune response to the microbiota, mediated by the neuropeptide CGRP and its receptor RAMP1 on skin microbiota-induced T lymphocytes. The neuroimmune CGPR-RAMP1 axis constrains adaptive immunity to the microbiota and overall limits the activation status of the skin epithelium, impacting tissue responses to wounding. Our study opens the door to a new avenue to modulate adaptive immunity to the microbiota utilizing neuromodulators, allowing for a more integrative and tailored approach to harnessing microbiota-induced T cells to promote barrier tissue protection and repair.

...