Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 611(7937): 733-743, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289335

RESUMEN

Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.


Asunto(s)
Neoplasias Colorrectales , Epigenoma , Genoma Humano , Mutación , Humanos , Adenoma/genética , Adenoma/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cromatina/genética , Cromatina/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Epigenoma/genética , Oncogenes/genética , Factores de Transcripción/metabolismo , Genoma Humano/genética , Interferones
2.
Nat Genet ; 52(9): 898-907, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879509

RESUMEN

Most cancer genomic data are generated from bulk samples composed of mixtures of cancer subpopulations, as well as normal cells. Subclonal reconstruction methods based on machine learning aim to separate those subpopulations in a sample and infer their evolutionary history. However, current approaches are entirely data driven and agnostic to evolutionary theory. We demonstrate that systematic errors occur in the analysis if evolution is not accounted for, and this is exacerbated with multi-sampling of the same tumor. We present a novel approach for model-based tumor subclonal reconstruction, called MOBSTER, which combines machine learning with theoretical population genetics. Using public whole-genome sequencing data from 2,606 samples from different cohorts, new data and synthetic validation, we show that this method is more robust and accurate than current techniques in single-sample, multiregion and longitudinal data. This approach minimizes the confounding factors of nonevolutionary methods, thus leading to more accurate recovery of the evolutionary history of human cancers.


Asunto(s)
Neoplasias/genética , Evolución Clonal/genética , Genética de Población/métodos , Genómica/métodos , Humanos , Aprendizaje Automático , Secuenciación Completa del Genoma/métodos
3.
Nat Commun ; 11(1): 1035, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098957

RESUMEN

Both normal tissue development and cancer growth are driven by a branching process of cell division and mutation accumulation that leads to intra-tissue genetic heterogeneity. However, quantifying somatic evolution in humans remains challenging. Here, we show that multi-sample genomic data from a single time point of normal and cancer tissues contains information on single-cell divisions. We present a new theoretical framework that, applied to whole-genome sequencing data of healthy tissue and cancer, allows inferring the mutation rate and the cell survival/death rate per division. On average, we found that cells accumulate 1.14 mutations per cell division in healthy haematopoiesis and 1.37 mutations per division in brain development. In both tissues, cell survival was maximal during early development. Analysis of 131 biopsies from 16 tumours showed 4 to 100 times increased mutation rates compared to healthy development and substantial inter-patient variation of cell survival/death rates.


Asunto(s)
Encéfalo/citología , Hematopoyesis/genética , Tasa de Mutación , Neoplasias/genética , Neoplasias/patología , Análisis de la Célula Individual/métodos , Teorema de Bayes , División Celular , Supervivencia Celular/genética , Heterogeneidad Genética , Humanos , Modelos Genéticos , Acumulación de Mutaciones , Neuronas/citología , Reproducibilidad de los Resultados , Secuenciación Completa del Genoma
4.
PLoS Comput Biol ; 15(7): e1007243, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356595

RESUMEN

Quantification of the effect of spatial tumour sampling on the patterns of mutations detected in next-generation sequencing data is largely lacking. Here we use a spatial stochastic cellular automaton model of tumour growth that accounts for somatic mutations, selection, drift and spatial constraints, to simulate multi-region sequencing data derived from spatial sampling of a neoplasm. We show that the spatial structure of a solid cancer has a major impact on the detection of clonal selection and genetic drift from both bulk and single-cell sequencing data. Our results indicate that spatial constrains can introduce significant sampling biases when performing multi-region bulk sampling and that such bias becomes a major confounding factor for the measurement of the evolutionary dynamics of human tumours. We also propose a statistical inference framework that incorporates spatial effects within a growing tumour and so represents a further step forwards in the inference of evolutionary dynamics from genomic data. Our analysis shows that measuring cancer evolution using next-generation sequencing while accounting for the numerous confounding factors remains challenging. However, mechanistic model-based approaches have the potential to capture the sources of noise and better interpret the data.


Asunto(s)
Modelos Biológicos , Neoplasias/genética , Neoplasias/patología , Proliferación Celular , Evolución Clonal , Biología Computacional , Simulación por Computador , Flujo Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Genéticos , Mutación , Análisis de la Célula Individual , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA