Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Materials (Basel) ; 15(4)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35207892

The kinetics and dynamics of the stiff and flexible tines with the duckfoot and the coulter after impact with stones embedded in compacted soil were examined. The beak of the duckfoot was positioned in the axis of the row of stones embedded in the soil at the depth of stones thickness. The coulter covered the stone or impact the edge of the stone halfway along its length. The tools worked at a speed of 0.83-2.22 m·s-1 and a working depth of 0.05-0.10 m. The results of specific parameters were compared to the response of the tools to loads in soil without stones. For both soil conditions, the kinetics of the flexible tine was 24 times more reactive, and the dynamic loads were two times lower than for the stiff tine. The responses of both tines were suppressed along with the working depth because of the more favorable place of impact of the duckfoot beak with the stone. Along with the working speed, for a stiff tine, the specific accelerations decreased significantly, by ten times, and the specific forces increased slightly, by 1.6 times. Among the two systems of setting the coulter, the impact of the cutting edge of the coulter with the stone in the middle of its length was more unfavorable than the work of the coulter covering the stone.

2.
Materials (Basel) ; 15(4)2022 Feb 19.
Article En | MEDLINE | ID: mdl-35208108

Analysis of the state of knowledge showed a gap in the description of tool-stone feedback. Therefore, the aim of this study was to investigate tool-stone interactions. Spherical-like silicate stones were hit by stiff and flexible tines with a duckfoot or a coulter. The tools worked with various parameters in the depth range of 0.05-0.10 m and a speed of 0.83-2.22 m·s-1. The characteristics of stone movement were specific to the type of tool and were described by the Numerical Stone Movement Scale developed for the purpose of the research. After the impact with the stiff tine, the stones were thrown the greatest distance of 0.26-1.08 m, and these distances were strongly dependent on the working speed and slightly dependent on the working depth. Large vibrations of the flexible tine and the location of the contact point of the tine in relation to the centre of the stone thickness contributed to the random behaviour of stones that were slightly moved, rotated or displaced. The specific work required to remove the stone reflected the distance travelled by the stone as well as the specific force which largely contributed to increasing the differences in this work between both tines.

...