Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 11(37): 17498-17505, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31532437

RESUMEN

The popularity of colloidal quantum dot (CQD) solar cells has increased owing to their tunable bandgap, multiple exciton generation, and low-cost solution processes. ZnO nanoparticle (NP) layers are generally employed as electron transport layers in CQD solar cells to efficiently extract the electrons. However, trap sites and the unfavorable band structure of the as-synthesized ZnO NPs have hindered their potential performance. Herein, we introduce a facile method of ZnO NP annealing in the colloidal state. Electrical, structural, and optical analyses demonstrated that the colloidal-annealing of ZnO NPs effectively passivated the defects and simultaneously shifted their band diagram; therefore, colloidal-annealing is a more favorable method as compared to conventional film-annealing. These CQD solar cells based on colloidal-annealed ZnO NPs exhibited efficient charge extraction, reduced recombination and achieved an enhanced power conversion efficiency (PCE) of 9.29%, whereas the CQD solar cells based on ZnO NPs without annealing had a PCE of 8.05%. Moreover, the CQD solar cells using colloidal-annealed ZnO NPs exhibited an improved air stability with 98% retention after 120 days, as compared to that of CQD solar cells using non-annealed ZnO NPs with 84% retention.

2.
Nano Converg ; 6(1): 17, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31155686

RESUMEN

There have been tremendous efforts to develop new synthetic methods for creating novel nanoparticles (NPs) with enhanced and desired properties. Among the many synthetic approaches, NP synthesis through ion exchange is a versatile and powerful technique providing a new pathway to design complex structures as well as metastable NPs, which are not accessible by conventional syntheses. Herein, we introduce kinetic and thermodynamic factors controlling the ion exchange reactions in NPs to fully understand the fundamental mechanisms of the reactions. Additionally, many representative examples are summarized to find related advanced techniques and unique NPs constructed by ion exchange reactions. Cation exchange reactions mainly occur in chalcogenide compounds, while anion exchange reactions are mainly involved in halogen (e.g. perovskite) and metal-chalcogenide compounds. It is expected that NP syntheses through ion exchange reactions can be utilized to create new devices with the required properties by virtue of their versatility and ability to tune fine structures.

3.
ACS Nano ; 12(7): 6554-6562, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29842775

RESUMEN

Biomaterials derived via programmable supramolecular protein assembly provide a viable means of constructing precisely defined structures. Here, we present programmed superstructures of AuPt nanoparticles (NPs) on carbon nanotubes (CNTs) that exhibit distinct electrocatalytic activities with respect to the nanoparticle positions via rationally modulated peptide-mediated assembly. De novo designed peptides assemble into six-helix bundles along the CNT axis to form a suprahelical structure. Surface cysteine residues of the peptides create AuPt-specific nucleation site, which allow for precise positioning of NPs onto helical geometries, as confirmed by 3-D reconstruction using electron tomography. The electrocatalytic model system, i.e., AuPt for oxygen reduction, yields electrochemical response signals that reflect the controlled arrangement of NPs in the intended assemblies. Our design approach can be expanded to versatile fields to build sophisticated functional assemblies.


Asunto(s)
Oro/química , Nanopartículas/química , Nanotubos de Carbono/química , Oxígeno/química , Péptidos/química , Platino (Metal)/química , Secuencia de Aminoácidos , Catálisis , Electricidad , Modelos Moleculares , Nanopartículas/ultraestructura , Nanotubos de Carbono/ultraestructura , Oxidación-Reducción
4.
Nanotechnology ; 29(22): 225602, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29513266

RESUMEN

This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA