Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959052

RESUMEN

Currently, there is no effective treatment for glioblastoma multiforme (GBM), the most frequent and malignant type of brain tumor. The blood-brain (tumor) barrier (BB(T)B), which is composed of tightly connected endothelial cells and pericytes (with partial vasculature collapse), hampers nanomedicine accumulation in tumor tissues. We aimed to explore the effect of nanomedicine size on passive targeting of GBM. A series of size-tunable poly(ethylene glycol) (PEG)-grafted copolymers (gPEGs) were constructed with hydrodynamic diameters of 8-30 nm. Biodistribution studies using orthotopic brain tumor-bearing mice revealed that gPEG brain tumor accumulation was maximized at 10 nm with ∼14 dose %/g of tumor, which was 19 times higher than that in the normal brain region and 4.2 times higher than that of 30-nm gPEG. Notably, 10-nm gPEG exhibited substantially higher brain tumor accumulation than 11-nm linear PEG owing to the prolonged blood circulation property of gPEGs, which is derived from a densely PEG-packed structure. 10 nm gPEG exhibited deeper penetration into the brain tumor tissue than the larger gPEGs did (>10 nm). This study demonstrates, for the first time, the great potential of a nanomedicine downsizing strategy for passive GBM targeting.

2.
J Control Release ; 347: 607-614, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35613686

RESUMEN

Muscle-targeted drug delivery is a major challenge in nanomedicine. The extravasation of nanomedicines (or nanoparticles) from the bloodstream into muscle tissues is hindered by the continuous endothelium, the so-called blood-muscle barrier. This study aimed to evaluate the optimal size of macromolecular drugs for extravasation (or passive targeting) into muscle tissues. We constructed a size-tunable polymeric delivery platform as a polymeric nanoruler by grafting poly(ethylene glycol)s (PEGs) onto the poly(aspartic acid) (PAsp) backbone. A series of PEG-grafted copolymers (gPEGs) with a narrow size distribution between 11 and 32 nm in hydrodynamic diameter (DH) were prepared by changing the molecular weight of the PEGs. Biodistribution analyses revealed that accumulation amounts of gPEGs in the muscle tissues of normal mice tended to decrease above their size of ~15 nm (or ~11 nm for the heart). The gPEGs accumulated in the skeletal muscles of Duchenne muscular dystrophy model mice (mdx mice) at a 2-3-fold higher level than in the skeletal muscles of normal mice. At the same time, there was a reduced accumulation of gPEGs in the spleen and liver. Intravital confocal laser scanning microscopy and immunohistochemical analysis showed extravasation and locally enhanced accumulation of gPEGs in the skeletal muscle of mdx mice. This study outlined the pivotal role of macromolecular drug size in muscle-targeted drug delivery and demonstrated the enhanced permeability of 11-32 nm-sized macromolecular drugs in mdx mice.


Asunto(s)
Polietilenglicoles , Polímeros , Animales , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Polietilenglicoles/química , Polímeros/metabolismo , Distribución Tisular
3.
Biomacromolecules ; 23(1): 388-397, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34935361

RESUMEN

To stabilize small interfering RNA (siRNA) in the bloodstream for systemic RNAi therapeutics, we previously fabricated ultrasmall siRNA nanocarriers that were sub-20 nm in hydrodynamic diameter, named as unit polyion complexes (uPICs), using two-branched poly(ethylene glycol)-b-poly(l-lysine) (bPEG-PLys). The blood retention time of uPICs is dramatically increased in the presence of free bPEG-PLys, suggesting dynamic stabilization of uPICs by free bPEG-PLys based on their equilibrium. Herein, we examined how the degree of polymerization of PLys (DPPLys) affected the dynamic stability of uPICs in the bloodstream during prolonged circulation. We prepared a series of bPEG-PLys with DPPLys values of 10, 13, 20, 40, and 80 for the uPIC formation and siRNA with 40 negative charges. These bPEG-PLys were then evaluated in physicochemical characterization and pharmacokinetic analyses. Structural analyses revealed that the uPIC size and association numbers were mainly determined by the molecular weights of PEG and DPPLys, respectively. Under bPEG-PLys-rich conditions, the hydrodynamic diameters of uPICs were 15-20 nm, which were comparable to that of the bPEG block (i.e., ∼18 nm). Importantly, DPPLys significantly affected the association constant of bPEG-PLys to siRNA (Ka) and blood retention of free bPEG-PLys. A smaller DPPLys resulted in a lower Ka and a longer blood retention time of free bPEG-PLys. Thus, DPPLys can control the dynamic stability of uPICs, i.e., the balance between Ka and blood concentration of free bPEG-PLys. Ultimately, the bPEG-PLys with DPPLys values of 14 and 19 prolonged the blood circulation of siRNA-loaded uPICs with relatively small amounts of free bPEG-PLys. This study revealed that the uPIC formation between siRNA and bPEG-PLys can be controlled by their charges, which may be helpful for designing PIC-based delivery systems.


Asunto(s)
Lisina , Polietilenglicoles , Cationes , Lisina/análogos & derivados , Polietilenglicoles/química , ARN Interferente Pequeño/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...