Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
JAMA Netw Open ; 7(5): e2410684, 2024 May 01.
Article En | MEDLINE | ID: mdl-38722627

Importance: In vivo imaging studies of reactive astrocytes are crucial for understanding the pathophysiology of schizophrenia because astrocytes play a critical role in glutamate imbalance and neuroinflammation. Objective: To investigate in vivo reactive astrocytes in patients with schizophrenia associated with positive symptoms using monoamine oxidase B (MAO-B)-binding fluorine 18 ([18F])-labeled THK5351 positron emission tomography (PET). Design, Setting, and Participants: In this case-control study, data were collected from October 1, 2021, to January 31, 2023, from the internet advertisement for the healthy control group and from the outpatient clinics of Seoul National University Hospital in Seoul, South Korea, for the schizophrenia group. Participants included patients with schizophrenia and age- and sex-matched healthy control individuals. Main Outcomes and Measures: Standardized uptake value ratios (SUVrs) of [18F]THK5351 in the anterior cingulate cortex (ACC) and hippocampus as primary regions of interest (ROIs), with other limbic regions as secondary ROIs, and the correlation between altered SUVrs and Positive and Negative Syndrome Scale (PANSS) positive symptom scores. Results: A total of 68 participants (mean [SD] age, 32.0 [7.0] years; 41 men [60.3%]) included 33 patients with schizophrenia (mean [SD] age, 32.3 [6.3] years; 22 men [66.7%]) and 35 healthy controls (mean [SD] age, 31.8 [7.6] years; 19 men [54.3%]) who underwent [18F]THK5351 PET scanning. Patients with schizophrenia showed significantly higher SUVrs in the bilateral ACC (left, F = 5.767 [false discovery rate (FDR)-corrected P = .04]; right, F = 5.977 [FDR-corrected P = .04]) and left hippocampus (F = 4.834 [FDR-corrected P = .04]) than healthy controls. Trend-level group differences between the groups in the SUVrs were found in the secondary ROIs (eg, right parahippocampal gyrus, F = 3.387 [P = .07]). There were positive correlations between the SUVrs in the bilateral ACC and the PANSS positive symptom scores (left, r = 0.423 [FDR-corrected P = .03]; right, r = 0.406 [FDR-corrected P = .03]) in patients with schizophrenia. Conclusions and Relevance: This case-control study provides novel in vivo imaging evidence of reactive astrocyte involvement in the pathophysiology of schizophrenia. Reactive astrocytes in the ACC may be a future target for the treatment of symptoms of schizophrenia, especially positive symptoms.


Astrocytes , Fluorine Radioisotopes , Positron-Emission Tomography , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/metabolism , Male , Female , Adult , Astrocytes/metabolism , Case-Control Studies , Positron-Emission Tomography/methods , Gyrus Cinguli/diagnostic imaging , Hippocampus/diagnostic imaging
2.
Schizophrenia (Heidelb) ; 9(1): 81, 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37945576

Changes in dopamine and fronto-striato-thalamic (FST) circuit functional connectivity are prominent in schizophrenia. Dopamine is thought to underlie connectivity changes, but experimental evidence for this hypothesis is lacking. Previous studies examined the association in some of the connections using positron emission tomography (PET) and functional MRI (fMRI); however, PET has disadvantages in scanning patients, such as invasiveness. Excessive dopamine induces neuromelanin (NM) accumulation, and NM-MRI is suggested as a noninvasive proxy measure of dopamine function. We aimed to investigate the association between NM and FST circuit connectivity at the network level in patients with schizophrenia. We analysed substantia nigra NM-MRI and resting-state fMRI data from 29 schizophrenia patients and 63 age- and sex-matched healthy controls (HCs). We identified the FST subnetwork with abnormal connectivity found in schizophrenia patients compared to that of HCs and investigated the relationship between constituting connectivity and NM-MRI signal. We found a higher NM signal (t = -2.12, p = 0.037) and a hypoconnected FST subnetwork (FWER-corrected p = 0.014) in schizophrenia patients than in HCs. In the hypoconnected subnetwork of schizophrenia patients, lower left supplementary motor area-left caudate connectivity was associated with a higher NM signal (ß = -0.38, p = 0.042). We demonstrated the association between NM and FST circuit connectivity. Considering that the NM-MRI signal reflects dopamine function, our results suggest that dopamine underlies changes in FST circuit connectivity, which supports the dopamine hypothesis. In addition, this study reveals implications for the future use of NM-MRI in investigations of the dopamine system.

3.
Mov Disord ; 37(3): 635-640, 2022 03.
Article En | MEDLINE | ID: mdl-34806782

BACKGROUND: Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) is an emerging target to potentially treat cognitive dysfunction. OBJECTIVES: The aim of this study is to achieve feasibility and safety of globus pallidus pars interna (GPi) and NBM DBS in advanced PD with cognitive impairment. METHODS: We performed a phase-II double-blind crossover pilot trial in six participants to assess safety and cognitive measures, the acute effect of NBM stimulation on attention, motor and neuropsychological data at one year, and neuroimaging biomarkers of NBM stimulation. RESULTS: NBM DBS was well tolerated but did not improve cognition. GPi DBS improved dyskinesia and motor fluctuations (P = 0.04) at one year. NBM stimulation was associated with reduced right frontal and parietal glucose metabolism (P < 0.01) and increased low- and high-frequency power and functional connectivity. Volume of tissue activated in the left NBM was associated with stable cognition (P < 0.05). CONCLUSIONS: Simultaneous GPi and NBM stimulation is safe and improves motor complications. NBM stimulation altered neuroimaging biomarkers but without lasting cognitive improvement. © 2021 International Parkinson and Movement Disorder Society.


Deep Brain Stimulation , Parkinson Disease , Basal Nucleus of Meynert , Cognition , Deep Brain Stimulation/methods , Globus Pallidus , Humans , Parkinson Disease/complications
4.
Mol Brain ; 14(1): 165, 2021 11 10.
Article En | MEDLINE | ID: mdl-34758845

REM sleep behaviour disorder (RBD) can be an early non-motor symptom of Parkinson's disease (PD) with pathology involving mainly the pontine nuclei. Beyond the brainstem, it is unclear if RBD patients comorbid with PD have more affected striatal dopamine denervation compared to PD patients unaffected by RBD (PD-RBD-). To elucidate this, we evaluated the availability of vesicular monoamine transporter 2 (VMAT2), an index of nigrostriatal dopamine innervation, in 15 PD patients with probable RBD (PD-RBD+), 15 PD-RBD-, and 15 age-matched healthy controls (HC) using [11C]DTBZ PET imaging. This technique measured VMAT2 availability within striatal regions of interest (ROI). A mixed effect model was used to compare the radioligand binding of VMAT2 between the three groups for each striatal ROI, while co-varying for sex, cognitive function and depression scores. Multiple regressions were also computed to predict clinical measures from group condition and VMAT2 binding within all ROIs explored. We observed a significant main effect of group condition on VMAT2 availability within the caudate, putamen, ventral striatum, globus pallidus, substantia nigra, and subthalamus. Specifically, our results revealed that PD-RBD+ had lower VMAT2 availability compared to HC in all these regions except for the subthalamus and substantia nigra, while PD-RBD- was significantly lower than HC in all these regions. PD-RBD- showed a negative relationship between motor severity and VMAT2 availability within the left caudate. Our findings reflect that both PD patient subgroups had similar denervation within the nigrostriatal pathway. There were no significant interactions detected between radioligand binding and clinical scores in PD-RBD+. Taken together, VMAT2 and striatal dopamine denervation in general may not be a significant contributor to the pathophysiology of RBD in PD patients. Future studies are encouraged to explore other underlying neural chemistry mechanisms contributing to RBD in PD patients.


Parkinson Disease , REM Sleep Behavior Disorder , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Parkinson Disease/metabolism , REM Sleep Behavior Disorder/complications , REM Sleep Behavior Disorder/diagnosis , REM Sleep Behavior Disorder/metabolism , Vesicular Monoamine Transport Proteins/metabolism
5.
J Neurosci Res ; 99(4): 1177-1187, 2021 04.
Article En | MEDLINE | ID: mdl-33470445

Rapid eye movement sleep behavior disorder (RBD) is a common condition found in more than 50% of the patients with Parkinson's disease (PD). Molecular imaging shows that PD with RBD (PD-RBD+) have lower striatal dopamine transporter activity within the caudate and putamen relative to PD without RBD (PD-RBD-). However, the characterization of the extra-striatal dopamine within the mesocortical and mesolimbic pathways remains unknown. We aim to elucidate this with PET imaging in 15 PD-RBD+ and 15 PD-RBD- patients, while having 15 age-matched healthy controls (HC). Each participant underwent a single PET scan with [11 C]FLB-457 to detect the D2 receptor availability within the extra-striatal regions of interest (ROI), including the prefrontal, temporal, and limbic areas. [11 C]FLB-457 retention was expressed as the nondisplaceable binding potential. Our results reveal that relative to HC, PD-RBD+ and PD-RBD- patients have lower levels of D2 receptor availability within the uncus parahippocampus, superior, lateral, and inferior temporal cortex. PD-RBD+ showed steep decline in D2 receptors within the left uncus parahippocampus with increasing disease severity, but this was not observed for PD-RBD- patients. Findings imply that extra-striatal dopaminergic system may play a role in contributing to symptomatic progress in PD patients with RBD. However, validation with more advanced PD patients are needed.


Dopamine/metabolism , Parkinson Disease/metabolism , REM Sleep Behavior Disorder/metabolism , Aged , Brain/metabolism , Cerebral Cortex/metabolism , Female , Healthy Volunteers , Humans , Male , Middle Aged , Parahippocampal Gyrus , Parkinson Disease/physiopathology , Positron-Emission Tomography , Receptors, Dopamine D2/metabolism
6.
J Neurosci Res ; 99(3): 947-965, 2021 03.
Article En | MEDLINE | ID: mdl-33271630

Cognitive decline in Parkinson's disease (PD) is a common sequela of the disorder that has a large impact on patient well-being. Its physiological etiology, however, remains elusive. Our study used graph theory analysis to investigate the large-scale topological patterns of the extrastriatal dopamine D2 receptor network. We used positron emission tomography with [11 C]FLB-457 to measure the binding potential of cortical dopamine D2 receptors in two networks: the meso-cortical dopamine network and the meso-limbic dopamine network. We also investigated the application of partial volume effect correction (PVEC) in conjunction with graph theory analysis. Three groups were investigated in this study divided according to their cognitive status as measured by the Montreal Cognitive Assessment score, with a score ≤25 considered cognitively impaired: (a) healthy controls (n = 13, 11 female), (b) cognitively unimpaired PD patients (PD-CU, n = 13, 5 female), and (c) PD patients with mild cognitive impairment (PD-MCI, n = 17, 4 female). In the meso-cortical network, we observed increased small-worldness, normalized clustering, and local efficiency in the PD-CU group compared to the PD-MCI group, as well as a hub shift in the PD-MCI group. Compensatory reorganization of the meso-cortical dopamine D2 receptor network may be responsible for some of the cognitive preservation observed in PD-CU. These results were found without PVEC applied and PVEC proved detrimental to the graph theory analysis. Overall, our findings demonstrate how graph theory analysis can be used to detect subtle changes in the brain that would otherwise be missed by regional comparisons of receptor density.


Brain/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Parkinson Disease/physiopathology , Receptors, Dopamine D2/physiology , Aged , Brain Mapping , Dopamine , Female , Humans , Male , Middle Aged , Nerve Net , Neuropsychological Tests , Positron-Emission Tomography , Receptors, Dopamine D2/metabolism
7.
Mol Neurobiol ; 56(11): 7731-7740, 2019 Nov.
Article En | MEDLINE | ID: mdl-31111400

Beta-amyloid (Aß) in the brain is a key pathological feature of certain neurodegenerative diseases. Recent studies using graph theory have shown that Aß brain networks are of pathological significance in Alzheimer's disease (AD). However, the characteristics of Aß brain networks in Parkinson's disease (PD) are unknown. In the present study using positron emission tomography (PET) with [11C]-Pittsburgh compound B (PiB), we applied a graph theory-based analysis to assess the topological properties of Aß brain network in PD patients with and without Aß burden (PiB-positive and PiB-negative, respectively) and healthy controls with Aß burden. We found that the PD PiB-positive group demonstrated significantly lower value in global efficiency and modularity compared with PD PiB-negative group. The less robust modular structure indicates the tendency of having increased inter-modular connections than intra-modular connectivity (i.e., reduced segregation). Results of hub organization showed that relative to PD PiB-negative group, different hubs were identified in the PiB-positive group, which were located mainly within the default mode network. Overall, our findings suggest disturbances in Aß topological organization characterized by abnormal network integration and segregation in PD patients with Aß burden. The stronger inter-modular connectivity observed in the PD PiB-positive group may suggest the spreading pattern of Aß between modules in those PD patients with elevated PiB burden, thus providing insight into the beta-amyloidopathy of PD.


Amyloid beta-Peptides/metabolism , Parkinson Disease/metabolism , Aged , Female , Humans , Male
8.
Front Neurosci ; 13: 106, 2019.
Article En | MEDLINE | ID: mdl-30837831

Auditory-motor entrainment using rhythmic auditory stimulation (RAS) has been shown to improve motor control in healthy persons and persons with neurologic motor disorders such as Parkinson's disease and stroke. Neuroimaging studies have shown the modulation of corticostriatal activity in response to RAS. However, the underlying neurochemical mechanisms for auditory-motor entrainment are unknown. The current study aimed to investigate RAS-induced dopamine (DA) responses in basal ganglia (BG) during finger tapping tasks combined with [11C]-(+)-PHNO-PET in eight right-handed young healthy participants. Each participant underwent two PET scans with and without RAS. Binding potential relative to the non-displaceable compartment (BPND) values were derived using the simplified reference tissue method. The task performance was measured using absolute tapping period error and its standard deviation. We found that the presence of RAS significantly improved the task performance compared to the absence of RAS, demonstrated by reductions in the absolute tapping period error (p = 0.007) and its variability (p = 0.006). We also found that (1) the presence of RAS reduced the BG BPND variability (p = 0.013) and (2) the absence of RAS resulted in a greater DA response in the left ventral striatum (VS) compared to the presence of RAS (p = 0.003), These suggest that the absence of external cueing may require more DA response in the left VS associated with more motivational and sustained attentional efforts to perform the task. Additionally, we demonstrated significant age effects on D2/3 R availability in BG: increasing age was associated with reduced D2/3 R availability in the left putamen without RAS (p = 0.026) as well as in the right VS with RAS (p = 0.02). This is the first study to demonstrate the relationships among RAS, DA response/D2/3 R availability, motor responses and age, providing the groundwork for future studies to explore mechanisms for auditory-motor entrainment in healthy elderly and patients with dopamine-based movement disorders.

9.
Mol Neurobiol ; 56(9): 6512-6520, 2019 Sep.
Article En | MEDLINE | ID: mdl-30847741

Dopaminergic signaling within the striatum is crucial for motor planning and mental function. Neurons within the striatum contain two dopamine D2 receptor isoforms-D2 long and D2 short. The amount of expression for these receptor isoforms is affected by the genotype within two single nucleotide polymorphisms (SNPs), rs2283265 and rs1076560 (both are in high linkage disequilibrium; C > A), found in the DRD2 gene. However, it is unclear how these SNPs affect the distribution of D2 receptors in vivo within the nigrostriatal dopaminergic system. We aim to elucidate this with PET imaging in healthy young adults using [11C]-(+)-PHNO. Participants were genotyped for the DRD2 rs2283265 SNP and a total of 20 enrolled: 9 with CC, 6 with CA, and 5 with AA genotype. The main effect of genotype on [11C]-(+)-PHNO binding was tested and we found significant group effect within the ventral striatum. Specifically, CC and CA carriers had higher binding in this region compared to AA carriers. There were no observed differences between genotypes in other regions within the basal ganglia. Our preliminary results implicate that the polymorphism genotype affects the dopaminergic signaling by controlling either the quantity of D2 receptors, D2 affinity, or a combination thereof within the ventral striatum.


Receptors, Dopamine D2/genetics , Ventral Striatum/metabolism , Adult , Female , Genotype , Humans , Male , Polymorphism, Single Nucleotide/genetics
10.
Neurobiol Dis ; 124: 176-182, 2019 04.
Article En | MEDLINE | ID: mdl-30471418

To date, the contribution of the nigropallidal pathway degeneration to Parkinson's disease (PD) motor symptoms has received little attention and is generally poorly understood in spite of solid evidence that the globus pallidus (GP) receives a dense neuronal projection from the substantia nigra. To explore the dopaminergic (DA) changes of the GP in PD, we measured the availability of vesicular monoamine transporter 2 (VMAT2) using [11C]DTBZ and positron emission tomography in 30 PD patients and 12 controls. PD patients were classified in two groups based on severity of disease. VMAT2 reduction was found to be significant in the external GP (GPe) regardless of the disease stage, while the internal GP (GPi) showed reduction only in more severe patients. Pallidal VMAT2 binding correlated with dopaminergic changes in the striatum, with the GPe showing a stronger association than GPi. Our findings showed DA terminals in the GPe and GPi may be differentially vulnerable in different stages of the disease, possibly playing a distinctive role in the development of motor complications with GPi DA deficiency contributing more to later-stage symptoms.


Dopaminergic Neurons/metabolism , Globus Pallidus/metabolism , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Aged , Aged, 80 and over , Basal Ganglia/diagnostic imaging , Basal Ganglia/metabolism , Female , Globus Pallidus/diagnostic imaging , Humans , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Substantia Nigra/diagnostic imaging
11.
Brain Imaging Behav ; 13(4): 1021-1034, 2019 Aug.
Article En | MEDLINE | ID: mdl-29971686

Cognitive decline in Parkinson's disease (PD) is a common sequela of the disease, with its severity increasing as the neurodegenerative process advances. The present meta-analysis used anisotropic effect size seed-based d mapping software to perform analyses using both functional and structural brain imaging data. The analyses were between PD patients with mild cognitive impairment (PD-MCI) and PD patients with dementia (PDD) compared to PD cognitively unimpaired patients (PD-CU) and PD patients without dementia (PD-ND) respectively. Thirty-four studies were found and split into three analyses: 405 PD-MCI patients compared to 559 PD-CU patients from 1) 15 studies with structural imaging modalities and 2) eight studies with functional imaging modalities, as well as 178 PDD patients compared to 278 PD-ND patients (which includes both PD-CU and PD-MCI) in 3) 11 studies with structural imaging modalities. Statistical threshold was set to uncorrected p < 0.001. We found several brain regions that differed between PD-MCI and PD-CU patients: the left insula, bilateral dorsolateral prefrontal cortex, left angular gyrus, midcingulate cortex, and right supramarginal gyrus. The brain regions identified in the PD-MCI analyses are associated with the somatosensory network and executive processing. In PDD patients, the bilateral insula and right hippocampus were found as regions of structural atrophy. The insula was found in both structural analyses of PD-MCI and PDD, with unilateral insula involvement in PD-MCI extending to bilateral insula involvement in PDD. The results found both a spectrum of increasing brain atrophy in PD cognitive impairment and supports the existence of sub-typing in PD-MCI.


Brain/physiopathology , Cognitive Dysfunction/physiopathology , Parkinson Disease/physiopathology , Aged , Atrophy/pathology , Cerebral Cortex/physiopathology , Cognition/physiology , Cognitive Dysfunction/diagnostic imaging , Dementia/physiopathology , Disease Progression , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neurodegenerative Diseases/pathology , Neuroimaging , Neuropsychological Tests , Parkinson Disease/metabolism , Prefrontal Cortex/physiopathology , Temporal Lobe/physiopathology
13.
J Neuropsychiatry Clin Neurosci ; 30(4): 325-333, 2018.
Article En | MEDLINE | ID: mdl-29843584

The capacity to regulate urges is an important human characteristic associated with a range of social and health outcomes. Self-regulatory capacity has been postulated to have a limited reserve, which when depleted leads to failure. The authors aimed to investigate the neural correlates of self-regulatory fatigability. Functional MRI was used to detect brain activations in 19 right-handed healthy subjects during inhibition of eye blinking, in a block design. The increase in number of blinks during blink inhibition from the first to the last block was used as covariate of interest. There was an increase in the number of eye blinks escaping inhibitory control across blink inhibition blocks, whereas there was no change in the number of eye blinks occurring during rest blocks. Inhibition of blinking activated a wide network bilaterally, including the inferior frontal gyrus, dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, supplementary motor area, and caudate. Deteriorating performance was associated with activity in orbitofrontal cortex, ventromedial prefrontal cortex, rostroventral anterior cingulate cortex, precuneus, somatosensory, and parietal areas. As anticipated, effortful eye-blink control resulted in activation of prefrontal control areas and regions involved in urge and interoceptive processing. Worsening performance was associated with activations in brain areas involved in urge, as well as regions involved in motivational evaluation. These findings suggest that self-regulatory fatigability is associated with relatively less recruitment of prefrontal cortical regions involved in executive control.


Blinking/physiology , Brain/physiology , Magnetic Resonance Imaging/methods , Neural Inhibition/physiology , Adult , Brain Mapping , Eye Movements/physiology , Female , Healthy Volunteers , Humans , Male
14.
Brain Imaging Behav ; 12(5): 1306-1317, 2018 Oct.
Article En | MEDLINE | ID: mdl-29170944

Modulating the function of the insular cortex could be a novel therapeutic strategy to treat addiction to a variety of drugs of abuse as this region has been implicated in mediating drug reward and addictive processes. The recent advent of the H-coil has permitted the targeting of deeper brain structures which was not previously feasible. The goal of this study was to bilaterally target the insular region using the H-coil with repetitive Transcranial Magnetic Stimulation (rTMS) and subsequently measure changes in dopamine levels using Positron Emission Tomography (PET) with [11C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO). This was a within-subject, crossover, blinded and sham-controlled pilot study. Eight healthy, right-handed subjects, aged 19-45, participated in the investigation. All subjects underwent 3 PHNO-PET scans preceded by rTMS (sham, 1 Hz or 10 Hz), on 3 separate days. Low frequency rTMS (1 Hz), targeting the insular cortex, significantly decreased dopamine levels in the substantia nigra, sensorimotor striatum and associative striatum. Replicating this study in tobacco smokers or alcoholics would be a logical follow-up to assess whether H-coil stimulation of the bilateral insula can be employed as a treatment option for addiction. Trial registration: NCT02212405.


Carbon Isotopes/chemistry , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Dopamine Agonists/administration & dosage , Dopamine/metabolism , Oxazines/administration & dosage , Positron-Emission Tomography , Transcranial Magnetic Stimulation , Adult , Brain Mapping , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Pilot Projects , Radiopharmaceuticals , Transcranial Magnetic Stimulation/instrumentation , Transcranial Magnetic Stimulation/methods , Young Adult
15.
Brain Struct Funct ; 223(2): 589-595, 2018 Mar.
Article En | MEDLINE | ID: mdl-28884232

This study investigated binding of [18F]AV-1451 to neuromelanin in the substantia nigra of patients with Parkinson's disease (PD) and progressive supranuclear palsy (PSP). [18F]AV-1451 is a positron emission tomography radiotracer designed to bind pathological tau. A post-mortem study using [18F]AV-1451 discovered off-target binding properties to neuromelanin in the substantia nigra. A subsequent clinical study reported a 30% decrease in [18F]AV-1451 binding in the midbrain of PD patients. A total of 12 patients and 10 healthy age-matched controls were recruited. An anatomical MRI and a 90-min PET scan, using [18F]AV-1451, were acquired from all participants. The standardized uptake value ratio (SUVR) from 60 to 90 min post-injection was calculated for the substantia nigra, using the cerebellar cortex as the reference region. The substantia nigra was delineated using automated region of interest software. An independent samples ANOVA and LSD post hoc testing were used to test for differences in [18F]AV-1451 SUVR between groups. Substantia nigra SUVR from 60 to 90 min was significantly greater in HC compared to both PSP and PD groups. Although the PD group had the lowest SUVR, there was no significant difference in substantia nigra uptake between PD and PSP. [18F]AV-1451 may be the first PET radiotracer capable of imaging neurodegeneration of the substantia nigra in parkinsonisms. Further testing must be done in PD and atypical parkinsonian disorders to support this off-target use of [18F]AV-1451.


Carbolines/pharmacokinetics , Contrast Media/pharmacokinetics , Melanins/metabolism , Parkinson Disease/pathology , Substantia Nigra/metabolism , Supranuclear Palsy, Progressive/pathology , Aged , Analysis of Variance , Case-Control Studies , Female , Humans , Male , Middle Aged , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Protein Binding/drug effects , Substantia Nigra/diagnostic imaging , Substantia Nigra/drug effects , Supranuclear Palsy, Progressive/diagnostic imaging
17.
J Cereb Blood Flow Metab ; 37(9): 3150-3160, 2017 Sep.
Article En | MEDLINE | ID: mdl-28155586

Progressive supranuclear palsy is a rare form of atypical Parkinsonism that differs neuropathologically from other parkinsonian disorders. While many parkinsonian disorders such as Parkinson's disease, Lewy body dementia, and multiple system atrophy are classified as synucleinopathies, progressive supranuclear palsy is coined a tauopathy due to the aggregation of pathological tau in the brain. [18F]AV-1451 (also known as [18F]-T807) is a positron emission tomography radiotracer that binds to paired helical filaments of tau in Alzheimer's disease. We investigated whether [18F]AV-1451 could be used as biomarker for the diagnosis and disease progression monitoring in progressive supranuclear palsy. Six progressive supranuclear palsy, six Parkinson's disease, and 10 age-matched healthy controls were recruited. An anatomical MRI and a 90-min PET scan, using [18F]AV-1451, were acquired from all participants. The standardized uptake value ratio from 60 to 90 min post-injection was calculated in each region of interest, using the cerebellar cortex as a reference region. No significant differences in standardized uptake value ratios were detected in our progressive supranuclear palsy group compared to the two control groups. [18F]AV-1451 may bind selectivity to the paired helical filaments in Alzheimer's disease, which differ from the straight conformation of tau filaments in progressive supranuclear palsy.


Brain/diagnostic imaging , Positron-Emission Tomography/methods , Protein Aggregation, Pathological/diagnostic imaging , Supranuclear Palsy, Progressive/diagnostic imaging , tau Proteins/metabolism , Aged , Brain/metabolism , Brain/pathology , Carbolines/metabolism , Case-Control Studies , Female , Fluorine Radioisotopes , Humans , Male , Middle Aged , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism , Supranuclear Palsy, Progressive/pathology
18.
Mov Disord Clin Pract ; 4(5): 698-709, 2017.
Article En | MEDLINE | ID: mdl-30363421

BACKGROUND: There is growing evidence that the serotonergic system, in particular serotonin 2A receptors, is involved in neuropsychiatric symptoms in Parkinson's disease (PD), including cognitive processing and visual hallucinations. However, the relationship between serotonin 2A receptor availability, visual hallucinations, and cognitive profile is unknown. The objective of this study was to investigate the level of serotonin 2A receptor availability in brain regions affected by visual hallucinations and to test the association with cognitive/behavioral changes in patients who have PD with visual hallucinations. METHODS: Nondemented patients who had PD with (n = 11) and without (n = 8) visual hallucinations and age-matched controls (n = 10) were recruited. All participants completed neuropsychological testing, which consisted of visuoperceptual, executive, memory, language, and frontal-behavioral function. Positron emission tomography scans using [18F]setoperone, a serotonin 2A antagonist radioligand, were acquired in patients with PD, and a parametric binding potential map of [18F]setoperone was calculated with the simplified reference tissue model using the cerebellum as a reference. RESULTS: Patients who had PD with visual hallucinations exhibited significantly lower scores on measures of executive and visuoperceptual functions compared with age-matched controls. These changes were paralleled by decreased [18F]setoperone binding in the right insula, bilateral dorsolateral prefrontal cortex, right orbitofrontal cortex, right middle temporal gyrus, and right fusiform gyrus. The psychometric correlation analysis revealed significant relationships among tests associated with visuoperceptual function, memory and learning, and serotonin 2A binding in different prefrontal and ventral visual stream regions. There was also reduced serotonin 2A receptor binding in patients who had PD with depression. CONCLUSIONS: These findings support a complex interaction between serotonin 2A receptor function and cognitive processing in patients who have PD with visual hallucinations.

19.
Hum Brain Mapp ; 38(1): 283-292, 2017 01.
Article En | MEDLINE | ID: mdl-27571419

Fatigue is a common and disabling non-motor symptom in Parkinson's disease associated with a feeling of overwhelming lack of energy. The aim of this study was to identify the neural substrates that may contribute to the development of fatigue in Parkinson's disease. Twenty-three Parkinson's disease patients meeting UK Brain Bank criteria for the diagnosis of idiopathic Parkinson's disease were recruited and completed the 2-[18 F]fluoro-2-deoxy-D-glucose (FDG)-PET scan. The metabolic activities of Parkinson's disease patients with fatigue were compared to those without fatigue using statistical parametric mapping analysis. The Parkinson's disease group exhibiting higher level of fatigue showed anti-correlated metabolic changes in cortical regions associated with the salience (i.e., right insular region) and default (i.e., bilateral posterior cingulate cortex) networks. The metabolic abnormalities detected in these brain regions displayed a significant correlation with level of fatigue and were associated with a disruption of the functional correlations with different cortical areas. These observations suggest that fatigue in Parkinson's disease may be the expression of metabolic abnormalities and impaired functional interactions between brain regions linked to the salience network and other neural networks. Hum Brain Mapp 38:283-292, 2017. © 2016 Wiley Periodicals, Inc.


Brain/diagnostic imaging , Brain/metabolism , Fatigue/etiology , Parkinson Disease/complications , Parkinson Disease/pathology , Aged , Fatigue/metabolism , Female , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Neuropsychological Tests , Parkinson Disease/metabolism , Positron-Emission Tomography , Statistics as Topic
20.
Front Aging Neurosci ; 8: 259, 2016.
Article En | MEDLINE | ID: mdl-27891090

The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson's disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD.

...