Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
ACS Appl Mater Interfaces ; 16(21): 27410-27418, 2024 May 29.
Article En | MEDLINE | ID: mdl-38738751

The development of a stable roll-to-roll (R2R) process for flexible large-area perovskite solar cells (PSCs) and modules is a pressing challenge. In this study, we introduced a new R2R PSC manufacturing system that employs a two-step deposition method for coating perovskite and uses intensive pulsed light (IPL) for annealing. This system has successfully fabricated small-sized cells and the first-ever large-sized, R2R-processed flexible modules. A key focus of our work was to accelerate the conversion of PbI2 to perovskite. To this end, we utilized IPL annealing and incorporated additives into the PbI2 layer. With these modifications, the R2R-processed perovskite films achieved a power conversion efficiency (PCE) of 16.87%, representing the highest reported value for R2R two-step processed PSCs. However, these cells exhibited hysteresis in reverse and forward PCE measurements. To address this, we introduced a dual-annealing process consisting of IPL followed by a 2-min thermal heating step. This approach successfully reduced hysteresis, resulting in low-hysteresis, R2R-processed flexible PSCs. Moreover, we fabricated large-scale flexible modules (10 × 10 cm2) with a PCE of 11.25% using the dual-annealing system, marking a significant milestone in this field.

2.
Cell Prolif ; : e13626, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38426218

NIMA-related kinase 2 (NEK2) is a serine/threonine protein kinase that regulates mitosis and plays pivotal roles in cell cycle regulation and DNA damage repair. However, its function in porcine embryonic development is unknown. In this study, we used an NEK2-specific inhibitor, JH295 (JH), to investigate the role of NEK2 in embryonic development and the underlying regulatory mechanisms. Inhibition of NEK2 after parthenogenesis activation or in vitro fertilization significantly reduced the rates of cleavage and blastocyst formation, the numbers of trophectoderm and total cells and the cellular survival rate compared with the control condition. NEK2 inhibition delayed cell cycle progression at all stages from interphase to cytokinesis during the first mitotic division; it caused abnormal nuclear morphology in two- and four-cell stage embryos. Additionally, NEK2 inhibition significantly increased DNA damage and apoptosis, and it altered the expression levels of DNA damage repair- and apoptosis-related genes. Intriguingly, NEK2 inhibition downregulated the expression of ß-catenin and its downstream target genes. To validate the relationship between Wnt/ß-catenin signalling and NEK2 during porcine embryonic development, we cultured porcine embryos in JH-treated medium with or without CHIR99021, a Wnt activator. CHIR99021 co-treatment strongly restored the developmental parameters reduced by NEK2 inhibition to control levels. Our findings suggest that NEK2 plays an essential role in porcine embryonic development by regulating DNA damage repair and normal mitotic division via the Wnt/ß-catenin signalling pathway.

3.
Int J Mol Sci ; 25(3)2024 Feb 04.
Article En | MEDLINE | ID: mdl-38339162

Globally, women have been adopting oocyte cryopreservation (OC) for fertility preservation for various reasons, such as inevitable gonadotoxic treatment for specific pathologic states and social preferences. While conventional vitrification (C-VIT) has improved the success rate of OC, challenges of possible toxicities of high-concentration cryoprotective agents and osmotic stress persist. To overcome these challenges, we evaluated the ultra-fast vitrification (UF-VIT) method, which reduces the equilibration solution stage exposure time compared to C-VIT by observing mouse oocyte intracellular organelles and embryonic development. Consequently, compared to fresh mouse oocytes, UF-VIT presented significant differences only in endoplasmic reticulum (ER) intensity and mitochondrial (MT) distribution. Meanwhile, C-VIT showed substantial differences in the survival rate, key ER and MT parameters, and embryonic development rate. UF-VIT exhibited considerably fewer negative effects on key MT parameters and resulted in a notably higher blastocyst formation rate than C-VIT. Meiotic spindle (spindle and chromosomes) morphology showed no significant changes between the groups during vitrification/warming (VW), suggesting that VW did not negatively affect the meiotic spindle of the oocytes. In conclusion, UF-VIT seems more effective in OC owing to efficient cytoplasmic water molecule extraction, osmotic stress reduction, and minimization of cell contraction and expansion amplitude, thus compensating for the drawbacks of C-VIT.


Cryoprotective Agents , Vitrification , Female , Animals , Mice , Humans , Cryoprotective Agents/pharmacology , Osmotic Pressure , Cryopreservation/methods , Oocytes
4.
J Anim Sci Biotechnol ; 14(1): 148, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38037099

BACKGROUND: Oxidative stress, caused by an imbalance in the production and elimination of intracellular reactive oxygen species (ROS), has been recognized for its detrimental effects on mammalian embryonic development. Luteolin (Lut) has been documented for its protective effects against oxidative stress in various studies. However, its specific role in embryonic development remains unexplored. This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism. RESULTS: After undergoing parthenogenetic activation (PA) or in vitro fertilization, embryos supplemented with 0.5 µmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates, with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control. Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control. Moreover, Lut supplementation significantly augmented mitochondrial content and membrane potential. Intriguingly, activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut, leading to the upregulation of antioxidant-related gene transcription levels. To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development, we cultured PA embryos in a medium supplemented with brusatol, with or without the inclusion of Lut. The positive effects of Lut on developmental competence were negated by brusatol treatment. CONCLUSIONS: Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence, and offers insight into the mechanisms regulating early embryonic development.

5.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Article En | MEDLINE | ID: mdl-36770520

Single-walled carbon nanotubes (SWCNTs) have an advantage in printing thin film transistors (TFTs) due to their high carrier mobility, excellent chemical stability, mechanical flexibility, and compatibility with solution-based processing. Thus, the printed SWCNT-based TFTs (pSWCNT-TFTs) showed significant technological potential such as integrated circuits, conformable sensors, and display backplanes. However, the long-term environmental stability of the pSWCNT-TFTs hinders their commercialization. Thus, to extend the stability of the pSWCNT-TFTs, such devices should be passivated with low water and oxygen permeability. Herein, we introduced the silicon nitride (SiNx) passivation method on the pSWCNT-TFTs via a combination of roll-to-roll (R2R) gravure and the roll-to-roll plasma-enhanced vapor deposition (R2R-PECVD) process at low temperature (45 °C). We found that SiNx-passivated pSWCNT-TFTs showed ± 0.50 V of threshold voltage change at room temperature for 3 days and ±1.2 V of threshold voltage change for 3 h through a Temperature Humidity Test (85/85 test: Humidity 85%/Temperature 85 °C) for both p-type and n-type pSWCNT-TFTs. In addition, we found that the SiNx-passivated p-type and n-type pSWCNT-TFT-based CMOS-like ring oscillator, or 1-bit code generator, operated well after the 85/85 test for 24 h.

6.
J Anim Sci Biotechnol ; 14(1): 32, 2023 Feb 22.
Article En | MEDLINE | ID: mdl-36814325

BACKGROUND: Anethole (AN) is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals. However, no study has examined the effect of AN on porcine embryonic development. Therefore, we investigated the effect of AN on the development of porcine embryos and the underlying mechanism. RESULTS: We cultured porcine in vitro-fertilized embryos in medium with AN (0, 0.3, 0.5, and 1 mg/mL) for 6 d. AN at 0.5 mg/mL significantly increased the blastocyst formation rate, trophectoderm cell number, and cellular survival rate compared to the control. AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control. Moreover, AN significantly improved the quantity of mitochondria and mitochondrial membrane potential, and increased the lipid droplet, fatty acid, and ATP levels. Interestingly, the levels of proteins and genes related to the sonic hedgehog (SHH) signaling pathway were significantly increased by AN. CONCLUSIONS: These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos.

7.
Front Cell Dev Biol ; 9: 689826, 2021.
Article En | MEDLINE | ID: mdl-34211977

Increasing evidence has demonstrated that oxidative stress impairs oocyte maturation, but the underlying mechanisms remain largely unknown. Here, for the first time, we examined the antioxidant role of luteolin in meiotic progression and the underlying mechanisms. Supplementation of 5 µM luteolin increased the rates of first polar body extrusion and blastocyst formation after parthenogenetic activation, and the expression levels of oocyte competence (BMP15 and GDF9)-, mitogen-activated protein kinase (MOS)-, and maturation promoting factor (CDK1 and Cyclin B)-related genes were also improved. Luteolin supplementation decreased intracellular reactive oxygen species levels and increased the expression levels of oxidative stress-related genes (SOD1, SOD2, and CAT). Interestingly, luteolin alleviated defects in cell organelles, including actin filaments, the spindle, mitochondria, the endoplasmic reticulum, and cortical granules, caused by H2O2 exposure. Moreover, luteolin significantly improved the developmental competence of in vitro-fertilized embryos in terms of the cleavage rate, blastocyst formation rate, cell number, cellular survival rate, and gene expression and markedly restored the competencies decreased by H2O2 treatment. These findings revealed that luteolin supplementation during in vitro maturation improves porcine meiotic progression and subsequent embryonic development by protecting various organelle dynamics against oxidative stress, potentially increasing our understanding of the underlying mechanisms governing the relationship between oxidative stress and the meiotic events required for successful oocyte maturation.

8.
Int J Mol Sci ; 21(16)2020 Aug 12.
Article En | MEDLINE | ID: mdl-32806749

Triclosan (TCS) is included in various healthcare products because of its antimicrobial activity; therefore, many humans are exposed to TCS daily. While detrimental effects of TCS exposure have been reported in various species and cell types, the effects of TCS exposure on early embryonic development are largely unknown. The aim of this study was to determine if TCS exerts toxic effects during early embryonic development using porcine parthenogenetic embryos in vitro. Porcine parthenogenetic embryos were cultured in in vitro culture medium with 50 or 100 µM TCS for 6 days. Developmental parameters including cleavage and blastocyst formation rates, developmental kinetics, and the number of blastomeres were assessed. To determine the toxic effects of TCS, apoptosis, oxidative stress, and mitochondrial dysfunction were assessed. TCS exposure resulted in a significant decrease in 2-cell rate and blastocyst formation rate, as well as number of blastomeres, but not in the cleavage rate. TCS also increased the number of apoptotic blastomeres and the production of reactive oxygen species. Finally, TCS treatment resulted in a diffuse distribution of mitochondria and decreased the mitochondrial membrane potential. Our results showed that TCS exposure impaired porcine early embryonic development by inducing DNA damage, oxidative stress, and mitochondrial dysfunction.


Blastocyst/drug effects , Embryonic Development/drug effects , Parthenogenesis/drug effects , Swine/embryology , Triclosan/toxicity , Animals , Apoptosis/drug effects , Blastomeres/drug effects , Cell Survival/drug effects , Embryo, Mammalian/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects
9.
PLoS One ; 15(7): e0236788, 2020.
Article En | MEDLINE | ID: mdl-32735629

This study aimed to establish and reproduce transgenic pigs expressing human growth hormone (hGH) in their milk. We also aimed to purify hGH from the milk, to characterize the purified protein, and to assess the potential of our model for mass production of therapeutic proteins using transgenic techniques. Using ~15.5 L transgenic pig milk, we obtained proteins with ≥ 99% purity after three pre-treatments and five column chromatography steps. To confirm the biosimilarity of our milk-derived purified recombinant hGH (CGH942) with commercially available somatropin (Genotropin), we performed spectroscopy, structural, and biological analyses. We observed no difference between the purified protein and Genotropin samples. Furthermore, rat models were used to assess growth promotion potential. Our results indicate that CGH942 promotes growth, by increasing bone development and body weight. Toxicity assessments revealed no abnormal findings after 4 weeks of continuous administration and 2 weeks of recovery. The no-observed-adverse-effect level for both males and females was determined to be 0.6 mg/kg/day. Thus, no toxicological differences were observed between commercially available somatropin and CGH942 obtained from transgenic pig milk. In conclusion, we describe a transgenic technique using pigs, providing a new platform to produce human therapeutic proteins.


Animals, Genetically Modified/metabolism , Human Growth Hormone , Recombinant Proteins , Animals , Chromatography, Affinity , Female , Gene Transfer Techniques , Human Growth Hormone/chemistry , Human Growth Hormone/genetics , Human Growth Hormone/metabolism , Humans , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity , Swine
10.
Anim Sci J ; 91(1): e13430, 2020.
Article En | MEDLINE | ID: mdl-32677174

Mitochondria are necessary for the transition from oocyte to embryo and for early embryonic development. Mitofusin 1 is the main mediator of mitochondrial fusion and homeostasis. We investigated Mitofusin 1 expression levels in porcine somatic cell nuclear transfer (SCNT) embryos. The rate of blastocyst formation in SCNT embryos was reduced significantly compared with that of parthenogenetic activation embryos. SCNT embryos showed significantly decreased Mitofusin 1 expression and mitochondrial membrane potential, while exhibiting increased reactive oxygen species and apoptosis. Mitochondrial functional changes were observed in the SCNT embryos and may be correlated with low levels of Mitofusin 1 to negatively affect development.


Apoptosis/genetics , Blastocyst , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression/genetics , Genetic Association Studies/veterinary , Membrane Potential, Mitochondrial/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Parthenogenesis/genetics , Swine/genetics , Swine/physiology , Animals , Cells, Cultured , Embryo Culture Techniques/veterinary , Fertilization in Vitro/veterinary , Nuclear Transfer Techniques/veterinary , Reactive Oxygen Species/metabolism
11.
Asian-Australas J Anim Sci ; 32(8): 1095-1103, 2019 Aug.
Article En | MEDLINE | ID: mdl-30744354

OBJECTIVE: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme 1α (IRE1α)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates IRE1α signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. METHODS: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. RESULTS: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. CONCLUSION: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

12.
13.
Sci Data ; 5: 170199, 2018 01 09.
Article En | MEDLINE | ID: mdl-29313843

The Rag2 knockout (KO) mouse is one of the most popular immune compromised animal models used in biomedical research. The immune compromised state concurrently alters many signalling pathways and molecules, including miRNAs and mRNA transcripts that are involved in important biological processes. In addition, miRNAs and transcripts are interdependent, often forming a feedback loop; dysregulation in one might alter the expression of the other, and both participate in many physiological processes including immune regulation. Here, we describe a comprehensive dataset containing alterations in the expression of both miRNAs and mRNAs in Rag2 KO mice compared to their wild type counterparts. The miRNA and mRNA expression profiles were generated from total RNA using a miRNA expression microarray or a BeadChip microarray, respectively. Hence, this dataset will provide the groundwork for a comparative study of the miRNAs and mRNAs that are dysregulated in Rag2 KO mice. It is hoped that the data will illuminate how miRNAs mediate immune regulation, as well as the interaction between miRNAs and mRNAs in Rag2 KO mice.


DNA-Binding Proteins/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Spleen , Animals , Gene Expression Profiling , Immunocompromised Host/genetics , Mice , Mice, Knockout
14.
Korean J Food Sci Anim Resour ; 37(5): 663-669, 2017.
Article En | MEDLINE | ID: mdl-29147089

This study were estimated the contribution of carcass traits to unit price, to analyze the marbling score as a categorical variable rather than a numerical variable, and to develop an optimal model that also includes the holiday effect and the raising period. The data for this study were acquired from the Quality Evaluation of the Korea Institute for Animal Products, and consisted of the trading records of 1,613,699 heads at 12 wholesale markets from 2010 to 2014. The unit price of a cow was estimated from the following parameters: -52.50 Won/mm, 8.93 Won/cm2, 7.20 Won/kg, and -1.04 Won/day for backfat thickness, eye muscle area, carcass weight, and raising period, respectively. Parameters for the dummy variables of marbling scores varied from 0 to 8328.74 Won/kg, which means that each marbling score grade had a different price value. The unit price of a steer was estimated from the following parameters: -92.12 Won/mm, 20.22 Won/cm2, 1.30 Won/kg, and -1.72 Won/day for backfat thickness, eye muscle area, carcass weights, and raising period, respectively. Parameters for dummy variables of marbling scores varied from 0 to 7338.80 Won/kg, which means that the grades of each marbling score had different price values. The unit price of sales during traditional holidays was significantly higher (827.71 Won/kg for cows, and 645.15 Won/kg for steers) than during non-holidays.We conclude that the use of categorical values for marbling scores would be needed to evaluate the price of Hanwoo beef using multiple regression analysis based on carcass traits and environmental factors.

15.
Oncotarget ; 8(41): 69398-69407, 2017 Sep 19.
Article En | MEDLINE | ID: mdl-29050212

This study comparatively investigated the transcriptional, physiological, and phenotypic differences of the immune disorder between severe combined immunodeficient (SCID) mouse and pig models. We discovered that the recombination activating gene-2 (Rag-2) SCID mice, but not RAG-2 SCID pigs, showed intense, infrequent, and mild cluster of CD3+-, CD4+-, and CD8+ signals respectively, suggesting that distinct species-specific effects exist. Furthermore, the expression of six relevant genes (NFATC1, CD79B, CD2, BLNK, FOXO1, and CD40) was more downregulated than that in the Rag-2 SCID mice, which provides a partial rationale for the death of T/B cells in the lymphoid organs of RAG-2 SCID pigs but not in Rag-2 SCID mice. Further, NK cell maturation-related gene expression was significantly lower in RAG-2 SCID pigs than in Rag-2 SCID mice. Consistently, the RAG-2 SCID pigs, but not Rag-2 SCID mice, developed human induced pluripotent stem cell-derived teratomas that were the same as those of perforin/Rag-2 SCID mice. Therefore, these unexpected findings indicate the superiority of RAG-2 SCID pigs over Rag-2 SCID mice as a suitable model for investigating human diseases.

16.
Mol Med Rep ; 15(6): 4176-4184, 2017 Jun.
Article En | MEDLINE | ID: mdl-28487952

Contraction of uterus tissue frequently occurs throughout the estrous cycle and is regulated by several endogenous factors, including estradiol, progesterone, luteinizing hormone, follicle­stimulating hormone, oxytocin (OXT) and contraction­associated proteins (CAPs). Contraction activity of uterus tissue according to the estrous cycle is important, due to the fact that it is directly associated with balanced implantation and stable pregnancy. However, few studies have examined the mechanism of uterus contraction activity in a porcine model. In the current study, porcine uterus tissue was separated into the follicular and luteal phases by histological analysis. To investigate regulation of contraction­associated factors according to the estrous cycle, mRNA and protein expression levels of reproductive hormonal receptors, including estrogen receptors, progesterone receptor and luteinizing hormone/choriogonadotropin receptor in addition to CAPs including OXT, OXT receptor (OXTR), hydroxyprostaglandin dehydrogenase 15­(NAD) and gap junction α­1 protein, were examined in the porcine uterus according to the follicular and luteal phases. For the results, hormonal receptors and CAPs were dynamically regulated depending on the estrous cycle. In conclusion, genes associated with uterine contraction and its regulatory hormonal receptors in the porcine uterus were differently regulated in the follicular and luteal phases, suggesting that these genes are critically involved in the remodeling and contraction of uterine tissue and may be required to modulate the physiological status of the uterus.


Estrous Cycle/genetics , Estrous Cycle/metabolism , Gene Expression , Receptors, Estrogen/genetics , Receptors, LH/genetics , Receptors, Progesterone/genetics , Uterus/physiology , Animals , Biomarkers , Female , Protein Biosynthesis , Receptors, Estrogen/metabolism , Receptors, LH/metabolism , Receptors, Progesterone/metabolism , Reproduction , Swine , Transcription, Genetic
17.
Sci Rep ; 7(1): 1451, 2017 05 03.
Article En | MEDLINE | ID: mdl-28469153

Carbon nanotube/polytetrafluoroethylene composite polymer targets are proposed for use in the fabrication of fluorocarbon thin films using the mid-frequency sputtering process. Fluorocarbon thin films deposited using carbon nanotube/polytetrafluoroethylene composite targets exhibit an amorphous phase with a smooth surface and show a high water contact angle, optical transmittance, and surface hardness. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy studies reveal that as the carbon nanotube concentration increased in the composite target, a carbon cross-linked structure was formed, which enhanced the film hardness and the modulus of the fluorocarbon thin film. Large-area fluorocarbon thin films with a substrate width of 700 mm were successfully fabricated by a pilot-scale roll-to-roll sputtering system using a carbon nanotube/polytetrafluoroethylene composite target.

18.
Toxicol Res ; 33(1): 49-54, 2017 Jan.
Article En | MEDLINE | ID: mdl-28133513

Vitamin D3 is a fat-soluble secosteroid responsible for enhancing intestinal absorption of calcium, iron, and other materials. Vitamin D3 deficiency, therefore, can cause health problems such as metabolic diseases, and bone disorder. Female sex hormones including estrogen and progesterone are biosynthesized mainly in the granulosa cells of ovary. In this study, we isolated granulosa cells from porcine ovary and cultured for the experiments. In order to examine the effect of vitamin D3 on the ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by real-time PCR and Western blot assay. The production of estrogen from the granulosa cells was also measured by the ELISA assay. Genes associated with follicle growth were not significantly altered by vitamin D3. However, it increases expression of genes involved in the estrogen-biosynthesis. Further, estrogen concentrations in porcine granulosa cell-cultured media increased in response to vitamin D3. These results showed that vitamin D3 is a powerful regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.

19.
Asian-Australas J Anim Sci ; 30(4): 585-592, 2017 Apr.
Article En | MEDLINE | ID: mdl-27764913

OBJECTIVE: The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. METHODS: Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. RESULTS: The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8) was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT) groups (31.4±8.3 to 33.4±11.1). After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05) between sexes. CONCLUSION: The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell.

20.
J Biomed Res ; 30(3): 203-8, 2016 May.
Article En | MEDLINE | ID: mdl-27533930

1,25-dihydroxyvitamin D3 (VD3), an active form of Vitamin D, is photosynthesized in the skin of vertebrates in response to solar ultraviolet B radiation (UV-B). VD3 deficiency can cause health problems such as immune disease, metabolic disease, and bone disorders. It has also been demonstrated that VD3 is involved in reproductive functions. Female sex hormones such as estrogen and progesterone are biosynthesized mainly in ovarian granulosa cells as the ovarian follicle develops. The functions of sex hormones include regulation of the estrus cycle and puberty as well as maintenance of pregnancy in females. In this study, we isolated granulosa cells from porcine ovaries and cultured them for experiments. To examine the effects of VD3 on ovarian granulosa cells, the mRNA and protein levels of genes were analyzed by Real-time PCR and Western blotting assay. Production of progesterone from granulosa cells was also measured by ELISA assay. As a result, transcriptional and translational regulation of progesterone biosynthesis-related genes in granulosa cells was significantly altered by VD3. Furthermore, progesterone concentrations in porcine granulosa cell-cultured media decreased in response to VD3. These results show that VD3 was a strong regulator of sex steroid hormone production in porcine granulosa cells, suggesting that vitamin D deficiency may result in inappropriate sexual development of industrial animals and eventually economic loss.

...