Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Prenat Diagn ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38809178

OBJECTIVES: We evaluated fetal cardiovascular physiology and mode of cardiac failure in premature miniature piglets on a pumped artificial placenta (AP) circuit. METHODS: Fetal pigs were cannulated via the umbilical vessels and transitioned to an AP circuit composed of a centrifugal pump and neonatal oxygenator and maintained in a fluid-filled biobag. Echocardiographic studies were conducted to measure ventricular function, umbilical blood flow, and fluid status. In utero scans were used as control data. RESULTS: AP fetuses (n = 13; 102±4d gestational age [term 115d]; 616 ± 139 g [g]; survival 46.4 ± 46.8 h) were tachycardic and hypertensive with initially supraphysiologic circuit flows. Increased myocardial wall thickness was observed. Signs of fetal hydrops were present in all piglets. Global longitudinal strain (GLS) measurements increased in the left ventricle (LV) after transition to the circuit. Right ventricle (RV) and LV strain rate decreased early during AP support compared with in utero measurements but recovered toward the end of the experiment. Fetuses supported for >24 h had similar RV GLS to in utero controls and significantly higher GLS compared to piglets surviving only up to 24 h. CONCLUSIONS: Fetuses on a pump-supported AP circuit experienced an increase in afterload, and redistribution of blood flow between the AP and systemic circulations, associated with elevated end-diastolic filling pressures. This resulted in heart failure and hydrops. These preterm fetuses were unable to tolerate the hemodynamic changes associated with connection to the current AP circuit. To better mimic the physiology of the native placenta and preserve normal fetal cardiovascular physiology, further optimization of the circuit will be required.

2.
Exp Physiol ; 109(6): 980-991, 2024 Jun.
Article En | MEDLINE | ID: mdl-38606906

Increasing placental perfusion (PP) could improve outcomes of growth-restricted fetuses. One way of increasing PP may be by using phosphodiesterase (PDE)-5 inhibitors, which induce vasodilatation of vascular beds. We used a combination of clinically relevant magnetic resonance imaging (MRI) techniques to characterize the impact that tadalafil infusion has on maternal, placental and fetal circulations. At 116-117 days' gestational age (dGA; term, 150 days), pregnant ewes (n = 6) underwent fetal catheterization surgery. At 120-123 dGA ewes were anaesthetized and MRI scans were performed during three acquisition windows: a basal state and then ∼15-75 min (TAD 1) and ∼75-135 min (TAD 2) post maternal administration (24 mg; intravenous bolus) of tadalafil. Phase contrast MRI and T2 oximetry were used to measure blood flow and oxygen delivery. Placental diffusion and PP were assessed using the Diffusion-Relaxation Combined Imaging for Detailed Placental Evaluation-'DECIDE' technique. Uterine artery (UtA) blood flow when normalized to maternal left ventricular cardiac output (LVCO) was reduced in both TAD periods. DECIDE imaging found no impact of tadalafil on placental diffusivity or fetoplacental blood volume fraction. Maternal-placental blood volume fraction was increased in the TAD 2 period. Fetal D O 2 ${D_{{{\mathrm{O}}_2}}}$ and V ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ were not affected by maternal tadalafil administration. Maternal tadalafil administration did not increase UtA blood flow and thus may not be an effective vasodilator at the level of the UtAs. The increased maternal-placental blood volume fraction may indicate local vasodilatation of the maternal intervillous space, which may have compensated for the reduced proportion of UtA D O 2 ${D_{{{\mathrm{O}}_2}}}$ .


Oxygen , Placenta , Placental Circulation , Tadalafil , Uterine Artery , Animals , Female , Tadalafil/pharmacology , Tadalafil/administration & dosage , Pregnancy , Sheep , Uterine Artery/drug effects , Placenta/drug effects , Placenta/blood supply , Placental Circulation/drug effects , Oxygen/blood , Regional Blood Flow/drug effects , Phosphodiesterase 5 Inhibitors/pharmacology , Phosphodiesterase 5 Inhibitors/administration & dosage , Magnetic Resonance Imaging , Fetus/blood supply , Fetus/drug effects
3.
J Physiol ; 2023 Nov 23.
Article En | MEDLINE | ID: mdl-37996982

Babies born with fetal growth restriction (FGR) are at higher risk of developing cardiometabolic diseases across the life course. The reduction in substrate supply to the developing fetus that causes FGR not only alters cardiac growth and structure but may have deleterious effects on metabolism and function. Using a sheep model of placental restriction to induce FGR, we investigated key cardiac metabolic and functional markers that may be altered in FGR. We also employed phase-contrast magnetic resonance imaging MRI to assess left ventricular cardiac output (LVCO) as a measure of cardiac function. We hypothesized that signalling molecules involved in cardiac fatty acid utilisation and contractility would be impaired by FGR and that this would have a negative impact on LVCO in the late gestation fetus. Key glucose (GLUT4 protein) and fatty acid (FATP, CD36 gene expression) substrate transporters were significantly reduced in the hearts of FGR fetuses. We also found reduced mitochondrial numbers as well as abundance of electron transport chain complexes (complexes II and IV). These data suggest that FGR diminishes metabolic and mitochondrial capacity in the fetal heart; however, alterations were not correlated with fetal LVCO. Overall, these data show that FGR alters fetal cardiac metabolism in late gestation. If sustained ex utero, this altered metabolic profile may contribute to poor cardiac outcomes in FGR-born individuals after birth. KEY POINTS: Around the time of birth, substrate utilisation in the fetal heart switches from carbohydrates to fatty acids. However, the effect of fetal growth restriction (FGR) on this switch, and thus the ability of the fetal heart to effectively metabolise fatty acids, is not fully understood. Using a sheep model of early onset FGR, we observed significant downregulation in mRNA expression of fatty acid receptors CD36 and FABP in the fetal heart. FGR fetuses also had significantly lower cardiac mitochondrial abundance than controls. There was a reduction in abundance of complexes II and IV within the electron transport chain of the FGR fetal heart, suggesting altered ATP production. This indicates reduced fatty acid metabolism and mitochondrial function in the heart of the FGR fetus, which may have detrimental long-term implications and contribute to increased risk of cardiovascular disease later in life.

4.
Physiol Rep ; 11(12): e15749, 2023 06.
Article En | MEDLINE | ID: mdl-37332034

Babies born growth restricted are at an increased risk of both poor short-and long-term outcomes. Current interventions to improve fetal growth are ineffective and do not lower the lifetime risk of poor health status. Maternal resveratrol (RSV) treatment increases uterine artery blood flow, fetal oxygenation, and fetal weight. However, studies suggest that diets high in polyphenols such as RSV may impair fetal hemodynamics. We aimed to characterize the effect of RSV on fetal hemodynamics to further assess its safety as an intervention strategy. Pregnant ewes underwent magnetic resonance imaging (MRI) scans to measure blood flow and oxygenation within the fetal circulation using phase contrast-MRI and T2 oximetry. Blood flow and oxygenation measures were performed in a basal state and then repeated while the fetus was exposed to RSV. Fetal blood pressure and heart rate were not different between states. RSV did not impact fetal oxygen delivery (DO2 ) or consumption (VO2 ). Blood flow and oxygen delivery throughout the major vessels of the fetal circulation were not different between basal and RSV states. As such, acute exposure of the fetus to RSV does not directly impact fetal hemodynamics. This strengthens the rationale for the use of RSV as an intervention strategy against fetal growth restriction.


Fetus , Hemodynamics , Pregnancy , Sheep , Animals , Female , Resveratrol/pharmacology , Fetal Development , Oxygen
5.
Front Cardiovasc Med ; 10: 1206138, 2023.
Article En | MEDLINE | ID: mdl-37288263

Over recent decades, a variety of advanced imaging techniques for assessing cardiovascular physiology and cardiac function in adults and children have been applied in the fetus. In many cases, technical development has been required to allow feasibility in the fetus, while an appreciation of the unique physiology of the fetal circulation is required for proper interpretation of the findings. This review will focus on recent advances in fetal echocardiography and cardiovascular magnetic resonance (CMR), providing examples of their application in research and clinical settings. We will also consider future directions for these technologies, including their ongoing technical development and potential clinical value.

6.
Neonatology ; 119(6): 735-744, 2022.
Article En | MEDLINE | ID: mdl-36252551

INTRODUCTION: Newborns exposed to sildenafil citrate (SC) in utero have increased rates of persistent pulmonary hypertension. The mechanism behind this has not yet been fully elucidated. We aimed to utilize a combination of clinically relevant MRI techniques to comprehensively characterize the haemodynamics of the fetal sheep whilst under the influence of SC. We hypothesized that these MRI techniques would detect SC-induced increases in pulmonary blood flow and oxygen delivery prior to birth. METHODS: At 116-117 days gestational age (term, 150 days), pregnant Merino ewes (n = 9) underwent fetal catheterization surgery. MRI scans were performed during a basal state and then repeated during a constant umbilical vein infusion of SC to measure blood flow and oxygenation within the major vessels of the fetal circulation using phase-contrast-MRI and T2 oximetry. RESULTS: Right and left ventricular cardiac outputs were not different between states. Pulmonary blood flow increased during the SC state resulting in elevated pulmonary oxygen delivery. Right to left heart shunting through the foramen ovale was reduced without reducing cerebral oxygen delivery. CONCLUSION: SC induces alterations to pulmonary haemodynamics in utero; a characteristic that if maintained may underlie or act as a precursor towards the elevated rates of poor pulmonary outcomes after birth. These MRI techniques are the first to comprehensively characterize sildenafil's direct impact on the pulmonary vasculature and its indirect detriment to the flow of oxygen-rich blood through the foramen ovale.


Oxygen , Sheep , Animals , Female , Sildenafil Citrate/pharmacology
7.
Adv Sci (Weinh) ; 9(30): e2203738, 2022 Oct.
Article En | MEDLINE | ID: mdl-36031385

Magnetic resonance imaging (MRI) assessment of fetal blood oxygen saturation (SO2 ) can transform the clinical management of high-risk pregnancies affected by fetal growth restriction (FGR). Here, a novel MRI method assesses the feasibility of identifying normally grown and FGR fetuses in sheep and is then applied to humans. MRI scans are performed in pregnant ewes at 110 and 140 days (term = 150d) gestation and in pregnant women at 28+3  ± 2+5 weeks to measure feto-placental SO2 . Birth weight is collected and, in sheep, fetal blood SO2 is measured with a blood gas analyzer (BGA). Fetal arterial SO2 measured by BGA predicts fetal birth weight in sheep and distinguishes between fetuses that are normally grown, small for gestational age, and FGR. MRI feto-placental SO2 in late gestation is related to fetal blood SO2 measured by BGA and body weight. In sheep, MRI feto-placental SO2 in mid-gestation is related to fetal SO2 later in gestation. MRI feto-placental SO2 distinguishes between normally grown and FGR fetuses, as well as distinguishing FGR fetuses with and without normal Doppler in humans. Thus, a multi-compartment placental MRI model detects low placental SO2 and distinguishes between small hypoxemic fetuses and normally grown fetuses.


Fetal Growth Retardation , Placenta , Female , Animals , Humans , Pregnancy , Sheep , Placenta/diagnostic imaging , Placenta/pathology , Birth Weight , Fetal Growth Retardation/diagnostic imaging , Magnetic Resonance Imaging , Fetus/diagnostic imaging , Fetus/pathology
8.
Front Physiol ; 13: 925772, 2022.
Article En | MEDLINE | ID: mdl-35941934

The recent demonstration of normal development of preterm sheep in an artificial extrauterine environment has renewed interest in artificial placenta (AP) systems as a potential treatment strategy for extremely preterm human infants. However, the feasibility of translating this technology to the human preterm infant remains unknown. Here we report the support of 13 preterm fetal pigs delivered at 102 ± 4 days (d) gestation, weighing 616 ± 139 g with a circuit consisting of an oxygenator and a centrifugal pump, comparing these results with our previously reported pumpless circuit (n = 12; 98 ± 4 days; 743 ± 350 g). The umbilical vessels were cannulated, and fetuses were supported for 46.4 ± 46.8 h using the pumped AP versus 11 ± 13 h on the pumpless AP circuit. Upon initiation of AP support on the pumped system, we observed supraphysiologic circuit flows, tachycardia, and hypertension, while animals maintained on a pumpless AP circuit exhibited subphysiologic flows. On the pumped AP circuit, there was a progressive decline in umbilical vein (UV) flow and oxygen delivery. We conclude that the addition of a centrifugal pump to the AP circuit improves survival of preterm pigs by augmenting UV flow through the reduction of right ventricular afterload. However, we continued to observe the development of heart failure within a matter of days.

9.
J Biophotonics ; 14(12): e202100157, 2021 12.
Article En | MEDLINE | ID: mdl-34499415

Intrauterine growth restriction (IUGR) is a result of limited substrate supply to the developing fetus in utero, and can be caused by either placental, genetic or environmental factors. Babies born IUGR can have poor long-term health outcomes, including being at higher risk of developing cardiovascular disease. Limited substrate supply in the IUGR fetus not only changes the structure of the heart but may also affect metabolism and function of the developing heart. We have utilised two imaging modalities, two-photon microscopy and phase-contrast MRI (PC-MRI), to assess alterations in cardiac metabolism and function using a sheep model of IUGR. Two-photon imaging revealed that the left ventricle of IUGR fetuses (at 140-141 d GA) had a reduced optical redox ratio, suggesting a reliance on glycolysis for ATP production. Concurrently, the use of PC-MRI to measure foetal left ventricular cardiac output (LVCO) revealed a positive correlation between LVCO and redox ratio in IUGR, but not control fetuses. These data suggest that altered heart metabolism in IUGR fetuses is indicative of reduced cardiac output, which may contribute to poor cardiac outcomes in adulthood.


Heart Ventricles , Placenta , Animals , Cardiac Output , Female , Fetal Growth Retardation/diagnostic imaging , Fetus/diagnostic imaging , Heart Ventricles/diagnostic imaging , Oxidation-Reduction , Pregnancy , Sheep
10.
Physiol Rep ; 9(17): e14999, 2021 09.
Article En | MEDLINE | ID: mdl-34435462

The ductus arteriosus (DA) functionally closes during the transition from fetal to postnatal life because of lung aeration and corresponding cardiovascular changes. The thorough and explicit measurement and visualization of the right and left heart output during this transition has not been previously accomplished. We combined 4D flow MRI (dynamic volumetric blood flow measurements) and T2 relaxometry (oxygen delivery quantification) in surgically instrumented newborn piglets to assess the DA. This was performed in Large White-Landrace-Duroc piglets (n = 34) spanning four age groups: term-9 days, term-3, term+1, and term+5. Subject's DA status was classified using 4D flow: closed DA, forward DA flow, reversed DA flow, and bidirectional DA flow. Over all states, vessel diameters and flows normalized to body weight increased with age (for example in the ascending aorta flow-term-9: 126.6 ± 45.4; term+5: 260.2 ± 80.0 ml/min per kg; p = 0.0005; ascending aorta diameter-term-9: 5.2 ± 0.8; term+5: 7.7 ± 0.4 mm; p = 0.0004). In subjects with reversed DA blood flow there was lower common carotid artery blood flow (forward: 37.5 ± 9.0; reversed: 20.0 ± 7.4 ml/min per kg; p = 0.032). Linear regression revealed that as net DA flow decreases, common carotid artery flow decreases (R2  = 0.32, p = 0.004), and left (R2  = 0.33, p = 0.003) and right (R2  = 0.34, p = 0.003) pulmonary artery flow increases. Bidirectional DA blood flow changed oxygen saturation as determined by MRI between the ascending and descending aorta (ascending aorta: 90.1% ± 8.4%; descending aorta: 75.6% ± 14.2%; p < 0.05). Expanded use of these techniques in preterm animal models will aid in providing new understandings of normal versus abnormal DA transition, as well as to test the effectiveness of related clinical interventions.


Blood Flow Velocity/physiology , Ductus Arteriosus/diagnostic imaging , Ductus Arteriosus/physiology , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods , Regional Blood Flow/physiology , Animals , Animals, Newborn , Female , Male , Swine
11.
Physiol Rep ; 9(5): e14742, 2021 03.
Article En | MEDLINE | ID: mdl-33650787

Artificial placenta (AP) technology aims to maintain fetal circulation, while promoting the physiologic development of organs. Recent reports of experiments performed in sheep indicate the intrauterine environment can be recreated through the cannulation of umbilical vessels, replacement of the placenta with a low-resistance membrane oxygenator, and incubation of the fetus in fluid. However, it remains to be seen whether animal fetuses similar in size to the extremely preterm human infant that have been proposed as a potential target for this technology can be supported in this way. Preterm Yucatan miniature piglets are similar in size to extremely preterm human infants and share similar umbilical cord anatomy, raising the possibility to serve as a good model to investigate the AP. To characterize fetal cardiovascular physiology, the carotid artery (n = 24) was cannulated in utero and umbilical vein (UV) and umbilical artery were sampled. Fetal UV flow was measured by MRI (n = 16). Piglets were delivered at 98 ± 4 days gestation (term = 115 days), cannulated, and supported on the AP (n = 12) for 684 ± 228 min (range 195-3077 min). UV flow was subphysiologic (p = .002), while heart rate was elevated on the AP compared with in utero controls (p = .0007). We observed an inverse relationship between heart rate and UV flow (r2  = .4527; p < .001) with progressive right ventricular enlargement that was associated with reduced contractility and ultimately hydrops and circulatory collapse. We attribute this to excessive afterload imposed by supraphysiologic circuit resistance and augmented sympathetic activity. We conclude that short-term support of the preterm piglet on the AP is feasible, although we have not been able to attain normal fetal physiology. In the future, we propose to investigate the feasibility of an AP circuit that incorporates a centrifugal pump in our miniature pig model.


Fetus/metabolism , Heart Failure/metabolism , Placenta/metabolism , Umbilical Cord/metabolism , Animals , Female , Humans , Models, Animal , Pregnancy , Prenatal Care/methods , Swine
12.
J Physiol ; 598(13): 2557-2573, 2020 07.
Article En | MEDLINE | ID: mdl-32378201

KEY POINTS: The application of fetal cardiovascular magnetic resonance imaging (CMR) to assess fetal cardiovascular physiology and cardiac function through the quantification of ventricular volumes has previously been investigated, but the approach has not yet been fully validated. Ventricular output measurements calculated from heart rate and stroke volumes (SV) of the right and left ventricles measured by ventricular volumetry (VV) exhibited a high level of agreement with phase-contrast (PC) blood flow measurements in the main pulmonary artery and ascending aorta, respectively. Ejection fraction of the right ventricle, which is lower than that of the left ventricle in postnatal subjects, was similar to the left ventricular ejection fraction in the fetus; probably due to the different loading conditions present in the fetal circulation. This study provides evidence to support the reliability of VV in the sheep fetus, providing evidence for its use in animal models of human diseases affecting the fetal circulation. ABSTRACT: The application of ventricular volumetry (VV) by cardiovascular magnetic resonance imaging (CMR) in the fetus remains challenging due to the small size of the fetal heart and high heart rate. The reliability of this technique in utero has not yet been established. The aim of this study was to assess the feasibility and reliability of VV in a fetal sheep model of human pregnancy. Right and left ventricular outputs by stroke volume (SV) measured using VV were compared with 2D phase-contrast (PC) CMR measurements of blood flow in the main pulmonary artery (MPA) and ascending aorta (AAo). At 124-140 days (d) gestation, singleton bearing Merino ewes underwent CMR under general anaesthesia using fetal femoral artery catheters, implanted at 109-117d, to trigger cine steady state free precession acquisitions of ventricular short-axis stacks. The short-axis cine stacks were segmented at end-systole and end-diastole, yielding right and left ventricular SV, ejection fraction, and cardiac outputs (SV × heart rate). PC cine acquisitions of MPA and AAo were analysed to measure blood flow, which served as comparators for the right and left cardiac outputs by VV. There was good correlation and agreement between VV and PC measures of ventricular outputs with no significant bias (r2  = 0.926; P < 0.0001; Bias = -4.7 ± 10.5 ml min-1  kg-1 ; 95% limits of agreement: -15.9 to 25.2 ml min-1  kg-1 ). This study validates fetal VV by CMR in a large animal model of human pregnancy and provides preliminary reference values of fetal sheep right and left ventricles in late gestation.


Heart Ventricles , Ventricular Function, Left , Animals , Feasibility Studies , Female , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging , Pregnancy , Pulmonary Artery , Reproducibility of Results , Sheep , Stroke Volume
...