Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 24(1): 140, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575941

RESUMEN

BACKGROUND: In traditional Asian medicine, dried rhizomes of Ligusticum chuanxiong Hort. (Chuanxiong Rhizoma [CR]) have long been used to treat pain disorders that affect the head and face such as headaches. Furthermore, they have been used primarily for blood circulation improvement or as an analgesic and anti-inflammatory medicine. This study aimed to investigate the neuroprotective effects of a methanol extract of CR (CRex) on ischemic stroke in mice caused by middle cerebral artery occlusion (MCAO). METHODS: C57BL/6 mice were given a 1.5-h transient MCAO (MCAO control and CRex groups); CRex was administered in the mice of the CRex group at 1,000-3,000 mg/kg either once (single dose) or twice (twice dose) before MCAO. The mechanism behind the neuroprotective effects of CRex was examined using the following techniques: brain infarction volume, edema, neurological deficit, novel object recognition test (NORT), forepaw grip strength, and immuno-fluorescence staining. RESULTS: Pretreating the mice with CRex once at 1,000 or 3,000 mg/kg and twice at 1,000 mg/kg 1 h before MCAO, brought about a significantly decrease in the infarction volumes. Furthermore, pretreating mice with CRex once at 3,000 mg/kg 1 h before MCAO significantly suppressed the reduction of forepaw grip strength of MCAO-induced mice. In the MCAO-induced group, preadministration of CRex inhibited the reduction in the discrimination ratio brought on by MCAO in a similar manner. CRex exhibited these effects by suppressing the activation of astrocytes and microglia, which regulated the inflammatory response. CONCLUSIONS: This study proposes a novel development for the treatment of ischemic stroke and provides evidence favoring the use of L. chuanxiong rhizomes against ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Ratones , Animales , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Metanol , Microglía , Astrocitos , Rizoma , Ratones Endogámicos C57BL
2.
Stroke ; 55(6): 1641-1649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572660

RESUMEN

BACKGROUND: The current management of patients with stroke with intravenous thrombolysis and endovascular thrombectomy is effective only when it is timely performed on an appropriately selected but minor fraction of patients. The development of novel adjunctive therapy is highly desired to reduce morbidity and mortality with stroke. Since endothelial dysfunction is implicated in the pathogenesis of stroke and is featured with suppressed endothelial nitric oxide synthase (eNOS) with concomitant nitric oxide deficiency, restoring endothelial nitric oxide represents a promising approach to treating stroke injury. METHODS: This is a preclinical proof-of-concept study to determine the therapeutic effect of transcranial treatment with a low-power near-infrared laser in a mouse model of ischemic stroke. The laser treatment was performed before the middle cerebral artery occlusion with a filament. To determine the involvement of eNOS phosphorylation, unphosphorylatable eNOS S1176A knock-in mice were used. Each measurement was analyzed by a 2-way ANOVA to assess the effect of the treatment on cerebral blood flow with laser Doppler flowmetry, eNOS phosphorylation by immunoblot analysis, and stroke outcomes by infarct volumes and neurological deficits. RESULTS: Pretreatment with a 1064-nm laser at an irradiance of 50 mW/cm2 improved cerebral blood flow, eNOS phosphorylation, and stroke outcomes. CONCLUSIONS: Near-infrared II photobiomodulation could offer a noninvasive and low-risk adjunctive therapy for stroke injury. This new modality using a physical parameter merits further consideration to develop innovative therapies to prevent and treat a wide array of cardiovascular diseases.


Asunto(s)
Terapia por Luz de Baja Intensidad , Óxido Nítrico Sintasa de Tipo III , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratones , Fosforilación , Terapia por Luz de Baja Intensidad/métodos , Masculino , Accidente Cerebrovascular , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media , Circulación Cerebrovascular/fisiología , Accidente Cerebrovascular Isquémico/metabolismo , Modelos Animales de Enfermedad
3.
Int J Med Sci ; 21(4): 644-655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464836

RESUMEN

Vascular dementia (VD) is the second most prevalent dementia type, with no drugs approved for its treatment. Here, the effects of Banhabaekchulcheonma-Tang (BBCT) on ischemic brain injury and cognitive function impairment were investigated in a bilateral carotid artery stenosis (BCAS) mouse model. Mice were divided into sham-operated, BCAS control, L-BBCT (40 ml/kg), and H-BBCT (80 ml/kg) groups. BBCT's effects were characterized using the Y-maze test, novel object recognition test (NORT), immunofluorescence staining, RNA sequencing, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses. The NORT revealed cognitive function improvement in the H-BBCT group, while the Y-maze test revealed no significant difference among the four groups. The CD68+ microglia and GFAP+ astrocyte numbers were reduced in the H-BBCT group. Furthermore, H-BBCT treatment restored the dysregulation of gene expression caused by BCAS. The major BBCT targets were predicted to be cell division cycle protein 20 (CDC20), Epidermal growth factor (EGF), and tumor necrosis factor receptor-associated factor 1 (TRAF1). BBCT regulates the neuroactive ligand-receptor interaction and neuropeptide signaling pathways, as predicted by KEGG and GO analyses, respectively. BBCT significantly improved cognitive impairment in a BCAS mouse model by inhibiting microglial and astrocyte activation and regulating the expression of CDC20, EGF, TRAF1, and key proteins in the neuroactive ligand-receptor interaction and neuropeptide signaling pathways.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Estenosis Carotídea , Disfunción Cognitiva , Neuropéptidos , Animales , Ratones , Estenosis Carotídea/complicaciones , Estenosis Carotídea/tratamiento farmacológico , Factor de Crecimiento Epidérmico/metabolismo , Ligandos , Factor 1 Asociado a Receptor de TNF/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Cognición , Modelos Animales de Enfermedad , Neuropéptidos/metabolismo , Ratones Endogámicos C57BL
4.
Front Pharmacol ; 15: 1329895, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549667

RESUMEN

In traditional Asian medicine, Ligusticum chuanxiong Hort also known as Conioselinum anthriscoides "Chuanxiong", is mainly used for improving blood circulation or for analgesic and anti-inflammatory purposes, but they also have a long history of use for pain disorders in the head and face, such as headache. Despite the possibility that the plant is effective for diseases such as cerebral infarction and vascular dementia (VaD), the mechanism of action is not well understood. To determine if the dried rhizomes of L. chuanxiong (Chuanxiong Rhizoma, CR) methanol extract (CRex) has activity in a VaD mice model. Through network analysis, we confirm that CR is effective in cerebrovascular diseases. In mice, we induce cognitive impairment, similar to VaD in humans, by chronically reducing the cerebral blood flow by performing bilateral common carotid artery stenosis (BCAS) and administering CRex for 6 weeks. We measure behavioral changes due to cognitive function impairment and use immunofluorescence staining to confirm if CRex can inhibit the activation of astrocytes and microglia involved in the inflammatory response in the brain. We quantify proteins involved in the mechanism, such as mitogen-activated protein kinases (MAPK), in the hippocampus and surrounding white matter, and analyze gene expression and protein interaction networks through RNA sequencing to interpret the results of the study. CRex administration rescued cognitive impairment relating to a novel object and inhibited the activation of astrocytes and microglia. Western blotting analysis revealed that CRex regulated the changes in protein expression involved in MAPK signaling such as extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38). The administration of CRex suppressed approximately 44% of the pathological changes in gene expression caused by BCAS. CRex extract effectively inhibited cognitive impairment caused by BCAS, and the mechanism through which this occurred is inhibited activation of astrocytes and microglia.

5.
Brain Sci ; 13(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239252

RESUMEN

Treatments to restore the balance of the temporomandibular joint (TMJ) are performed in the field of complementary and alternative medicine; however, evidence supporting this approach remains weak. Therefore, this study attempted to establish such evidence. Bilateral common carotid artery stenosis (BCAS) operation, which is commonly used for the establishment of a mouse model of vascular dementia, was performed, followed by tooth cutting (TEX) for maxillary malocclusion to promote the imbalance of the TMJ. Behavioural changes, changes in nerve cells and changes in gene expression were assessed in these mice. The TEX-induced imbalance of the TMJ caused a more severe cognitive deficit in mice with BCAS, as indicated by behavioural changes in the Y-maze test and novel object recognition test. Moreover, inflammatory responses were induced via astrocyte activation in the hippocampal region of the brain, and the proteins involved in inflammatory responses were found to be involved in these changes. These results indirectly show that therapies that restore the balance of the TMJ can be effectively used for the management of cognitive-deficit-related brain diseases associated with inflammation.

6.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047066

RESUMEN

Fraxinus rhynchophylla Hance bark has been used to treat patients with inflammatory or purulent skin diseases in China, Japan, and Korea. This study was undertaken to determine the mechanism responsible for the effects of F. rhynchophylla and whether it has a therapeutic effect in mice with contact dermatitis (CD). In this study, the active compounds in F. rhynchophylla, their targets, and target gene information for inflammatory dermatosis were investigated using network-based pharmacological analysis. Docking analysis was conducted using AutoDock Vina. In addition, the therapeutic effect of an ethanolic extract of F. rhynchophylla (EEFR) on skin lesions and its inhibitory effects on histopathological abnormalities, inflammatory cytokines, and chemokines were evaluated. Finally, its inhibitory effects on the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways were observed in RAW 264.7 cells. In our results, seven active compounds were identified in F. rhynchophylla, and six were associated with seven genes associated with inflammatory dermatosis and exhibited a strong binding affinity (<-6 kcal/mol) to prostaglandin G/H synthase 2 (PTGS2). In a murine 1-fluoro-2,4-dinitrobenzene (DNFB) model, topical EEFR ameliorated the surface symptoms of CD and histopathological abnormalities. EEFR also reduced the levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-6, and monocyte chemotactic protein (MCP)-1 in inflamed tissues and inhibited PTGS2, the nuclear translocation of NF-κB (p65), and the activation of c-Jun N-terminal kinases (JNK) in RAW 264.7 cells. In conclusion, the bark of F. rhynchophylla has potential use as a therapeutic or cosmetic agent, and the mechanism responsible for its effects involves the suppression of inflammatory mediators, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB)-α degradation, the nuclear translocation of NF-κB, and JNK phosphorylation.


Asunto(s)
Dermatitis por Contacto , Fraxinus , Animales , Ratones , FN-kappa B/metabolismo , Fraxinus/metabolismo , Ciclooxigenasa 2/metabolismo , Corteza de la Planta/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dermatitis por Contacto/tratamiento farmacológico , Interleucina-6 , Lipopolisacáridos/farmacología , Óxido Nítrico
7.
Pharmaceutics ; 14(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36559268

RESUMEN

Glycyrrhizae Radix et Rhizoma (GR) is a traditional herbal medicine widely used in Asian countries. GR was the most frequently used medicine among stroke patients in Donguibogam, the most representative book in Korean medicine. In the present study, we investigated the neuroprotective effects of the GR methanolic extract (GRex) on an ischemic stroke mice model. Ischemic stroke was induced by a 90 min transient middle cerebral artery occlusion (MCAO), and GRex was administered to mice with oral gavage after reperfusion of MCA blood flow. The MCAO-induced edema and infarction volume was measured, and behavioral changes were evaluated by a novel object recognition test (NORT). Immunofluorescence stains and Western blotting identified underlying mechanisms of the protective effects of GRex. GRex post-treatment in mice with MCAO showed potent effects in reducing cerebral edema and infarction at 125 mg/kg but no effects when the dosage was much lower or higher than 125 mg/kg. GRex inhibited the decrease of spontaneous motor activity and novel object recognition functions. The neuroprotective effects of GRex on ischemic stroke were due to its regulation of inflammation-related neuronal cells, such as microglia and astrocytes.

8.
Int J Med Sci ; 19(13): 1942-1952, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438916

RESUMEN

Among geriatric diseases, cerebrovascular disease ranks fourth according to the Causes of Death Statistics in 2019, Korea, and is the most common cause of acquired disorders in adults. Daehwang-Hwanglyoun-Sasim-Tang (DHST), a herbal prescription consisting of two herbal medicines, Rhei Rhizoma and Coptidis Rhizoma, has been reported to have anti-inflammatory, antioxidant, and anticancer effects. This study was conducted to confirm the anti-inflammatory mechanism of DHST treatment in ischemic brain injury and to confirm the role of DHST in cognitive function improvement. C57BL/6 male mice were randomly divided into four groups (sham operation, bilateral common carotid artery stenosis (BCAS) control, experimental group administered 5 mL/kg DHST, experimental group administered 50 mL/kg DHST), with each group containing five mice. After 1 week, DHST was orally administered for 4 weeks, 5 days a week, and then behavioral evaluation of learning and memory was performed. In addition, morphological changes in the neurons in the CA1 region of the hippocampus were observed. Inflammation-related factors were evaluated using western blot analysis. In the 50 mL/kg DHST (H-DHST) group, the expression of apoptosis-related proteins was reduced and neuronal damage was suppressed in the hippocampal CA1 region. However, cognitive improvement was observed in the H-DHST group that was attributable to anti-inflammatory and antiapoptotic pathways. In the 5 mL/kg DHST group, no significant effect was observed compared with the control group.


Asunto(s)
Lesiones Encefálicas , Estenosis Carotídea , Animales , Masculino , Ratones , Estenosis Carotídea/complicaciones , Estenosis Carotídea/tratamiento farmacológico , Cognición , Ratones Endogámicos C57BL
9.
J Ginseng Res ; 46(2): 275-282, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35509825

RESUMEN

Background: Stroke is a neurological disorder characterized by brain tissue damage following a decrease in oxygen supply to brain due to blocked blood vessels. Reportedly, 80% of all stroke cases are classified as cerebral infarction, and the incidence rate of this condition increases with age. Herein, we compared the efficacies of Korean White ginseng (WG) and Korean Red Ginseng (RG) extracts (WGex and RGex, respectively) in an ischemic stroke mouse model and confirmed the underlying mechanisms of action. Methods: Mice were orally administered WGex or RGex 1 h before middle cerebral artery occlusion (MCAO), for 2 h; the size of the infarct area was measured 24 h after MCAO induction. Then, the neurological deficit score was evaluated and the efficacies of the two extracts were compared. Finally, their mechanisms of action were confirmed with tissue staining and protein quantification. Results: In the MCAO-induced ischemic stroke mouse model, WGex and RGex showed neuroprotective effects in the cortical region, with RGex demonstrating superior efficacy than WGex. Ginsenoside Rg1, a representative indicator substance, was not involved in mediating the effects of WGex and RGex. Conclusion: WGex and RGex could alleviate the brain injury caused by ischemia/reperfusion, with RGex showing a more potent effect. At 1,000 mg/kg body weight, only RGex reduced cerebral infarction and edema, and both anti-inflammatory and anti-apoptotic pathways were involved in mediating these effects.

10.
Pharm Biol ; 59(1): 662-671, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34062098

RESUMEN

CONTEXT: Traditionally, the root of Angelica gigas Nakai (Umbelliferae), has long been used to treat ischaemic diseases and is considered safe in humans. OBJECTIVE: To investigate the neuroprotective effects of a methanol extract of A. gigas root (AGmex) on the middle cerebral artery occlusion (MCAO)-induced brain injury in mice, and the underlying mechanisms. MATERIALS AND METHODS: Two hours of transient MCAO (tMCAO) was induced in C57BL/6 mice (MCAO control group and AGmex groups), AGmex was administered to the AGmex group at 300-3,000 mg/kg bw at 1, 1, and 24 h before tMCAO or at 1000 mg/kg bw at 1 h before and after tMCAO. Infarction volumes, tissue staining, and western blotting were used to investigate the mechanism underlying the neuroprotective effects of AGmex. RESULTS: The median effective dose (ED50) could not be measured because the AGmex treatment did not reduce the infarction volume caused by 2 h of tMCAO to within 50%; however, pre-treatment with AGmex twice at 1,000 mg/kg bw before tMCAO significantly reduced the infarction volumes. The proteins related to cell growth, differentiation, and death were upregulated by this treatment, and the major recovery mechanisms appeared to involve the attenuation of the mitochondrial function of Bcl-2/Bax and activation of the PI3K/AKT/mTOR and MAPK signalling pathways in ischaemic neurons. CONCLUSIONS: This study provides evidence supporting the use of A. gigas root against ischaemic stroke and suggests a novel developmental starting point for the treatment of ischaemic stroke.


Asunto(s)
Angelica/química , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Animales , Lesiones Encefálicas/etiología , Lesiones Encefálicas/prevención & control , Relación Dosis-Respuesta a Droga , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico/complicaciones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/aislamiento & purificación , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/administración & dosificación , Raíces de Plantas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
11.
Pharm Biol ; 59(1): 840-853, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34184969

RESUMEN

CONTEXT: Recently in Korean medicine, the antioxidant and anti-inflammatory activities of Seonghyangjeongki-san (SHJKS) were reported. However, studies on the specific mechanisms of action of SHJKS for the treatment of ischaemic stroke are still lacking. OBJECTIVE: This study investigates the mechanism of action of the water extract methanol fraction of modified SHJKS (SHJKSmex) on cerebral ischaemic injury. MATERIALS AND METHODS: C57BL/6 male mice were orally administered SHJKSmex (30, 100, or 300 mg/kg) for 3 consecutive days (2 days, 1 day, and 1 h, respectively) before middle cerebral artery occlusion (MCAO). Twenty-four hours after MCAO, the infarct volumes were measured, brain edoema indices were calculated, and neurological deficit scores were determined. Inflammation-related substances in the ipsilateral hemisphere were determined by western blotting, dichlorofluorescin diacetate, thiobarbituric acid-reactive substances assay, and enzyme-linked immunosorbent assay. RESULTS: SHJKSmex pre-treatment at 300 mg/kg decreased infarct volume by 87% and mean brain water content by 90% of the MCAO control group. Moreover, SHJKSmex effectively suppressed the expression of inducible nitric oxide synthase, reactive oxygen species, interleukin 1, and caspases-8 and -9 and increased the B-cell lymphoma 2/Bcl-2-associated X protein ratio (Bcl-2/Bax) in ischaemic mouse brain. The hippocampal pyramidal cell densities were significantly increased in the 300 mg/kg SHJKSmex-administered group compared to the MCAO control group. DISCUSSION AND CONCLUSIONS: SHJKSmex protected the brain from ischaemic stroke in mice through its antioxidant, anti-inflammatory, and antiapoptotic activities. Our findings suggest that SHJKSmex is a promising therapeutic candidate for the development of a new formulation for ischaemia-induced brain damage.


Asunto(s)
Ataque Isquémico Transitorio/tratamiento farmacológico , Metanol , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Agua , Animales , Relación Dosis-Respuesta a Droga , Ataque Isquémico Transitorio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Accidente Cerebrovascular/metabolismo , Resultado del Tratamiento
12.
Neuroreport ; 32(6): 458-464, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33657076

RESUMEN

BACKGROUND: Interest is growing in the role played by intestinal flora in the pathogeneses of diseases and in the possibility of treating disease by altering intestinal flora compositions. Recent studies have focused on the relationship between the intestinal microbiome and brain function as proposed by the brain-gut axis hypothesis. OBJECTIVES: To investigate the relation between ischemic stroke and plasma equol monosulfate levels (a soy isoflavone metabolite) in a middle cerebral artery occlusion (MCAO) mouse model. METHODS: Mice (C57BL/6) were subjected to MCAO for various times (30 min to 24 h), and degrees of cerebral damage were assessed using total infarction volumes, brain edema severities and neurological deficit scores. Hematoxylin and eosin and cresyl violet staining were used to observe morphological changes in ischemic brains. Levels of equol monosulfate in plasma and the relationships between these and degree of brain injury were investigated. RESULTS: Infarction volumes, brain edema severity and neurological deficit scores were significantly correlated with ischemic time, and morphological deteriorations of brain neuronal cells also increased with ischemic duration. Equol monosulfate contents were ischemic-time dependently lower in MCAO treated animals than in sham-operated controls. CONCLUSION: Ischemic stroke may time-dependently reduce plasma levels of equol monosulfate by lowering the metabolic rate of equol in MCAO-induced mice. This study provides indirect support of the brain-gut axis hypothesis.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Equol/sangre , Microbioma Gastrointestinal , Accidente Cerebrovascular Isquémico/sangre , Animales , Edema Encefálico/sangre , Edema Encefálico/inmunología , Edema Encefálico/patología , Edema Encefálico/fisiopatología , Eje Cerebro-Intestino/inmunología , Región CA1 Hipocampal/patología , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Hipocampo/patología , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/inmunología , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/fisiopatología , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Sulfatos/sangre , Factores de Tiempo
13.
Chin J Nat Med ; 19(2): 134-142, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33641784

RESUMEN

Some species of Artemisia have been reported to induce apoptosis and autophagy, but little is known of the apoptotic and autophagic effects of the stems and leaves of Artemisia kruhsiana Bess. (AkB). This study was conducted to investigate the antioxidant and anti-autophagic effects of the methanol extracts of the stems (EAkBs) and leaves (EAkBl) of AkB on human prostate cancer PC-3 cells. The antioxidant effects of EAkBs and EAkBl were measured using in vitro total flavonoid and total phenolic assays and a free radical scavenging assay. The effects of EAkBl on cell viability, apoptosis, autophagy, intracellular reactive oxygen species (ROS) generation and protein expression levels were also investigated. EAkBl was found to induce apoptosis, autophagy, and intracellular ROS generation in PC-3 cells. In terms of protein levels, EAkBl reduced phospho (p)-protein kinase B (AKT)/AKT, p-mammalian target of rapamycin (mTOR)/mTOR, B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) ratios, and the activations of beclin 1/ß-actin and microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3 I ratios in PC-3 cells. The results of this study indicate EAkBl has antioxidant and anticancer effects on prostate cancer cells, and that these effects are associated with suppressions of p-AKT, p-mTOR, Bcl-2, and Bax, and the activations of beclin 1 and LC3. Our results indicate EAkBl has potential as a treatment for prostate cancer.


Asunto(s)
Artemisia , Muerte Celular Autofágica , Extractos Vegetales , Neoplasias de la Próstata , Apoptosis , Artemisia/química , Línea Celular Tumoral , Humanos , Masculino , Extractos Vegetales/farmacología , Hojas de la Planta/química , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología
14.
Chin J Nat Med ; 18(10): 793-800, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33039058

RESUMEN

Dracocephalum palmatum Stephan is a medicinal plant traditionally used by nomadic people in Eastern Russia; however, research on this plant is currently limited. Recently, although studies have been conducted on the constituents of this plant and their antioxidant effects, data on its various pharmacological activities are still lacking. Thus, this study examined the anticancer potential of the dried leaves of D. palmatum S. (DpL) using human prostate cancer PC-3 cells. The antioxidant potential of DpL was evaluated by estimating the total flavonoid and total phenolic content (TFC and TPC, respectively). Additionally, we investigated the effects of the DpL ethyl acetate fraction (DpLE) on cell proliferation, intracellular reactive oxygen species (ROS) generation, apoptosis, and cell cycle arrest in this cell line. The expression levels of superoxide dismutase (SOD)-1, SOD-2, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) ratio, phospho-protein kinase B (p-AKT), cleaved caspase-8, poly adenosine diphosphate (ADP) ribose polymerase (PARP), and cleaved-PARP were evaluated by western blotting. The results indicated that DpLE causes apoptosis and exerts intracellular ROS-independent anticancer effects on prostate cancer cells, associated with increased SOD-2, cleaved caspase-8, and cleaved-PARP expression and inhibited p-AKT signaling. Thus, DpLE may be a potential resource for the development of promising chemotherapeutic agents for prostate cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Lamiaceae/química , Extractos Vegetales/farmacología , Neoplasias de la Próstata/patología , Puntos de Control del Ciclo Celular , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
15.
Chin Med ; 15: 101, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983252

RESUMEN

BACKGROUND: The root of Angelica gigas Nakai (Apiaceae) has been traditionally used as an important herbal medicine to treat blood-deficiency-related disorders in Eastern Asian countries, and recently, it has been recognized as a potential candidate for improving cardiovascular diseases. METHODS: In this study, the neuroprotective effect of a methanol extract of A. gigas root (RAGE) was investigated in a mouse stroke model induced by a 90 min transient middle cerebral artery occlusion (tMCAO). Infarction volumes and morphological changes in brain tissues were measured using TTC, cresyl violet, and H&E staining. The neuroprotective mechanism of RAGE was elucidated through investigation of protein expression levels using western blotting, IHC, and ELISA assays. The plasma concentrations of decursin, a major compound in RAGE, were measured after oral administration of RAGE to SD rats. RESULTS: The infarction volumes in brain tissues were significantly reduced and the morphological deteriorations in the brain neuron cells were improved in tMCAO mice when pre-treated with RAGE at 1000 mg/(kg bw·d) for two consecutive days. The neuroprotective mechanism of RAGE was confirmed to attenuate ERK-related MAPK signaling pathways in the ipsilateral hippocampus hemisphere in mice. The concentrations of decursin in rat plasma samples showed peak absorption and elimination in vivo after oral administration of RAGE at 100 mg/rat. CONCLUSION: Mice administered RAGE before the tMCAO operation had less neuronal cell death than those that were not administered RAGE prior to the operation, and this study provides preclinical evidence for use of A. gigas in ischemic stroke.

16.
Chin J Integr Med ; 26(9): 688-693, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26264569

RESUMEN

OBJECTIVE: To investigate the anti-inflflammatory effects of Sanguisorbae Radix on contact dermatitis (CD). METHODS: Mice were sensitized by painting 30 µL of 1-fluoro-2,4-dinitrofluorobenzene (DNFB) onto each ear for 3 days. Four days later, mice were challenged by painting with 50 µL of DNFB onto the shaved dorsum every 2 days. Sanguisorbae Radix methanol extract (MESR) was applied onto the shaved dorsum every 2 days. The effects of MESR on skin thickness, skin weights, histopathological changes, skin lesions and cytokine production in DNFB-induced CD mice were investigated, as well as its effects on body weights and spleen/body weight ratio. RESULTS: Topical application of MESR effectively inhibited enlargement of skin thickness and weight (P<0.05). MESR treatment also inhibited hyperplasia, spongiosis and immune cell infiltration induced by DNFB in inflamed tissues and improved lesions on dorsum skin in CD mice. Moreover, treatment with MESR suppressed the increase in the levels of tumor necrosis factor α (TNF-α,P<0.01) and interferon γ (IFN-γ,P<0.05), respectively. Finally, MESR had no effect on body weight gain or spleen/body weight ratio. CONCLUSION: These data suggest that MESR acts as an anti-inflflammatory agent that decreases the production of TNF-α and IFN-γ, resulting in reductions of skin lesions and histopathological changes in inflamed skin tissues.


Asunto(s)
Antiinflamatorios/farmacología , Dermatitis por Contacto/patología , Extractos Vegetales/farmacología , Sanguisorba/química , Animales , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Dermatitis por Contacto/tratamiento farmacológico , Dermatitis por Contacto/etiología , Dermatitis por Contacto/metabolismo , Dinitrofluorobenceno , Hiperplasia/metabolismo , Hiperplasia/patología , Hiperplasia/prevención & control , Ratones , Extractos Vegetales/uso terapéutico , Raíces de Plantas/química , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Enfermedades de la Piel/inducido químicamente , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patología , Factor de Necrosis Tumoral alfa/metabolismo
17.
Pharm Biol ; 57(1): 676-683, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31545933

RESUMEN

Context: Ephedrae Herba (EH), the dried stems and leaves of Ephedra sinica Stapf., E. intermedia Schrenk et C. A. Mey., or E. equisetina Bge. (Ephedraceae [Ephedra]) is used to treat respiratory diseases. Recently, especially in the Republic of Korea, EH has also been used for weight reduction. Objective: We evaluated the effects and molecular targets of methanol EH extract (EHM) on high-fat diet (HFD)-induced hyperlipidemic ICR mice. Materials and methods: EHM was orally administered (100 mg/kg body weight/day) for 3 weeks. We observed changes in body weight (BW), total cholesterol (TC), high-density lipoprotein-cholesterol, and triglycerides to evaluate the physiological changes induced by HFD or EHM administration. To evaluate lipid peroxidation and liver toxicity, malondialdehyde and blood alanine aminotransferase levels were measured. In addition to analyzing liver gene expression profiles, EHM target proteins were identified using a protein interaction database. Results: EHM administration for 3 weeks significantly (p < 0.05) decreased TC and triglyceride levels without altering BW in mice, and gene expression levels in the livers of EHM-treated mice were restored at 34.0% and 48.4% of those up- or down-regulated by hyperlipidaemia, respectively. Proteins related to DNA repair and energy metabolism were identified via protein interaction network analysis as molecular targets of EHM that play key roles in ameliorating hyperlipidaemia. Discussion and conclusions: EHM regulated hyperlipidaemia by decreasing total blood lipid and triglyceride levels in hyperlipidaemic mice. EHM showed preventive effects against hyperlipidaemia in mice, possibly via the regulation of DNA repair and the expression of energy metabolism-related genes and proteins.


Asunto(s)
Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa/efectos adversos , Ephedra sinica , Hiperlipidemias/tratamiento farmacológico , Extractos Vegetales/farmacología , Alanina Transaminasa/sangre , Animales , Peso Corporal/efectos de los fármacos , Colesterol/sangre , Hiperlipidemias/inducido químicamente , Hiperlipidemias/genética , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Metanol , Ratones , Ratones Endogámicos ICR , Extractos Vegetales/química , Triglicéridos/sangre
18.
J Ethnopharmacol ; 233: 141-147, 2019 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-30630090

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The roots and rhizomes of Gentiana scabra Bunge in the family Gentianaceae comprise a major herbal medicine for skin diseases caused by wind-heat or dampness-heat in China, Japan and Korea. This treatment can clear away heat and dry dampness and purge fire from the liver and gallbladder. AIM OF THE STUDY: This study was designed to investigate the therapeutic potential and anti-inflammatory effects of G. scabra, roots and rhizomes. MATERIALS AND METHODS: Thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) revealed the presence of gentiopicrin in the roots and rhizomes of G. scabra. We then investigated the effects of ethanol extract of G. scabra, roots and rhizomes (EEGS) on skin lesions and thickness, erythema and melanin index, histopathological abnormalities, and cytokine and chemokine production in mice with contact dermatitis (CD) induced by 1-fluoro-2,4-dinitrofluorobenzene (DNFB). Moreover, the effects of EEGS on body weights and spleen body weight ratio were evaluated. RESULTS: Topical application of EEGS alleviated skin lesions such as surface roughness, excoriations and scabs on the skin of CD mice, as well as prevented skin enlargement, and lowered the erythema and melanin index. In addition, EEGS prevented hyperkeratosis, epidermal hyperplasia and immune cell infiltration, and inhibited TNF-α, IFN-γ, IL-6 and MCP-1 production in inflamed tissues. EEGS did not affect changes in body weights and spleen body weight ratio in contrast to dexamethasone. CONCLUSIONS: These data indicate that the roots and rhizomes of G. scabra can be used as anti-inflammatory agents for CD with relative safety and that its therapeutic mechanisms are related to regulation of pro-inflammatory cytokines such as TNF-α and IFN-γ.


Asunto(s)
Dermatitis por Contacto/tratamiento farmacológico , Gentiana , Extractos Vegetales/uso terapéutico , Animales , Citocinas/inmunología , Dermatitis por Contacto/inmunología , Dermatitis por Contacto/patología , Hiperplasia/tratamiento farmacológico , Hiperplasia/inmunología , Hiperplasia/patología , Masculino , Ratones Endogámicos BALB C , Fitoterapia , Extractos Vegetales/farmacología , Raíces de Plantas , Piel/efectos de los fármacos , Piel/inmunología , Piel/patología
19.
J Vis Exp ; (142)2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30582585

RESUMEN

Ischemia followed by reperfusion of cerebral blood flow after a stroke leads to the death of nerve cells and loss of brain tissue. The most commonly used animal model for studying stroke is the middle cerebral artery occlusion (MCAO) model. Previous research studies have reported different infarct sizes even when the same experimental animal species was used under similar MCAO conditions. Therefore, we developed an improved experimental method to address this discrepancy. Mice were subjected to MCAO using a filament as the occlusion material to mimic human stroke conditions and filament thickness was optimized to establish more reproducible infarction volume. Mice treated with a methanol extract of Glycyrrhizae Radix et Rhizome (GRex) following stroke induction showed a significantly decreased total infarction volume and increased number of surviving cells relative to the untreated control group. This modified experimental protocol successfully and reproducibly demonstrated the beneficial effect of GRex on ischemic stroke.


Asunto(s)
Glycyrrhiza/clasificación , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Rizoma/química
20.
Pharmacogn Mag ; 14(54): 174-179, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29720827

RESUMEN

BACKGROUND: Cabbage, Brassica oleracea var. capitata L., is one of the most common vegetables in the world. Because of its high levels of flavonoids and anthocyanins, cabbage has long been used as a herbal medicine. The antioxidant and anti-inflammatory properties of cabbage were also recently been reported. OBJECTIVE: This study was designed to investigate the anti-inflammatory effects of cabbage in mice with contact dermatitis (CD). MATERIALS AND METHODS: We investigated the effects of methanol extract of B. oleracea var. capitata L. (MEBO) on ear swelling, erythema, and histopathological changes in CD mice. Moreover, the effects on cytokine production and the spleen/body weight ratio were investigated. RESULTS: Topical treatment with MEBO inhibited ear swelling and erythema significantly. MEBO also significantly inhibited epidermal hyperplasia and infiltration of immune cells. Furthermore, the levels of tumor necrosis factor-alpha, interferon-gamma, interleukin-6, and monocyte chemotactic protein-1 in inflamed tissues were effectively lowered by MEBO. Finally, MEBO did not affect body weight gain or spleen body weight ratio. CONCLUSIONS: These results indicate that cabbage can be used for the treatment of skin inflammation and that its anti-inflammatory activity is closely related to the inhibition of Th1 skewing reactions. SUMMARY: MEBO inhibited ear thickness, weight, and erythema in inflamed skinMEBO also prevented epidermal hyperplasia and infiltration of immune cellsThe levels of tumor necrosis factor-α, interferon-γ, interleukin-6, and monocyte chemotactic protein-1 in inflamed tissues were lowered by MEBO. Abbreviations used: AOO: Acetone and olive oil (4:1), CBA: Cytometric bead array, CD: Contact dermatitis, DEX: Dexamethasone, DNFB: 1-fluoro-2,4-dinitrofluorobenzene, GM-CSF: Granulocyte-macrophage colony-stimulating factor, ICAM-1: Intercellular Adhesion Molecule-1, LPS: Lipopolysaccharide, MEBO: Methanol extract of Brassica oleracea, MCP-1: Monocyte chemotactic protein-1, NO: Nitric oxide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...