Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
bioRxiv ; 2023 Aug 10.
Article En | MEDLINE | ID: mdl-37609316

Apicomplexan parasites possess several specialized structures to invade their host cells and replicate successfully. One of these is the inner membrane complex (IMC), a peripheral membrane-cytoskeletal system underneath the plasma membrane. It is composed of a series of flattened, membrane-bound vesicles and a cytoskeletal subpellicular network (SPN) comprised of intermediate filament-like proteins called alveolins. While the alveolin proteins are conserved throughout the Apicomplexa and the broader Alveolata, their precise functions and interactions remain poorly understood. Here, we describe the function of one of these alveolin proteins, TgIMC6. Disruption of IMC6 resulted in striking morphological defects that led to aberrant motility, invasion, and replication. Deletion analyses revealed that the alveolin domain alone is largely sufficient to restore localization and partially sufficient for function. As this highlights the importance of the IMC6 alveolin domain, we implemented unnatural amino acid photoreactive crosslinking to the alveolin domain and identified multiple binding interfaces between IMC6 and two other cytoskeletal proteins - IMC3 and ILP1. To our knowledge, this provides the first direct evidence of protein-protein interactions in the alveolin domain and supports the long-held hypothesis that the alveolin domain is responsible for filament formation. Collectively, our study features the conserved alveolin proteins as critical components that maintain the parasite's structural integrity and highlights the alveolin domain as a key mediator of SPN architecture.

2.
Cell Microbiol ; 19(4)2017 04.
Article En | MEDLINE | ID: mdl-27696623

The Toxoplasma inner membrane complex (IMC) is a specialized organelle underlying the parasite's plasma membrane that consists of flattened rectangular membrane sacs that are sutured together and positioned atop a supportive cytoskeleton. We have previously identified a novel class of proteins localizing to the transverse and longitudinal sutures of the IMC, which we named IMC sutures components (ISCs). Here, we have used proximity-dependent biotin identification at the sutures to better define the composition of this IMC subcompartment. Using ISC4 as bait, we demonstrate biotin-dependent labeling of the sutures and have uncovered two new ISCs. We also identified five new proteins that exclusively localize to the transverse sutures that we named transverse sutures components (TSCs), demonstrating that components of the IMC sutures consist of two groups: those that localize to the transverse and longitudinal sutures (ISCs) and those residing only in the transverse sutures (TSCs). In addition, we functionally analyze the ISC protein ISC3 and demonstrate that ISC3-null parasites have morphological defects and reduced fitness in vitro. Most importantly, Δisc3 parasites exhibit a complete loss of virulence in vivo. These studies expand the known composition of the IMC sutures and highlight the contribution of ISCs to the ability of the parasite to proliferate and cause disease.


Protozoan Proteins/physiology , Toxoplasma/ultrastructure , Cells, Cultured , Female , Gene Knockout Techniques , Host-Parasite Interactions , Humans , Phosphatidate Phosphatase/physiology , Phosphatidate Phosphatase/ultrastructure , Protozoan Proteins/ultrastructure , Toxoplasma/physiology , Virulence
3.
RNA Biol ; 10(3): 353-9, 2013 Mar.
Article En | MEDLINE | ID: mdl-23328630

Genuine La and La-related proteins group 7 (LARP7) bind to the non-coding RNAs transcribed by RNA polymerase III (RNAPIII), which end in UUU-3'OH. The La motif and RRM1 of these proteins (the La module) cooperate to bind the UUU-3'OH, protecting the RNA from degradation, while other domains may be important for RNA folding or other functions. Among the RNAPIII transcripts is ciliate telomerase RNA (TER). p65, a member of the LARP7 family, is an integral Tetrahymena thermophila telomerase holoenzyme protein required for TER biogenesis and telomerase RNP assembly. p65, together with TER and telomerase reverse transcriptase (TERT), form the Tetrahymena telomerase RNP catalytic core. p65 has an N-terminal domain followed by a La module and a C-terminal domain, which binds to the TER stem 4. We recently showed that the p65 C-terminal domain harbors a cryptic, atypical RRM, which uses a unique mode of single- and double-strand RNA binding and is required for telomerase RNP catalytic core assembly. This domain, which we named xRRM, appears to be present in and unique to genuine La and LARP7 proteins. Here we review the structure of the xRRM, discuss how this domain could recognize diverse substrates of La and LARP7 proteins and discuss the functional implications of the xRRM as an RNP chaperone.


Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , RNA, Protozoan/chemistry , Telomerase/chemistry , Tetrahymena thermophila/enzymology , Amino Acid Motifs , Catalytic Domain , Models, Molecular , Nuclear Proteins/genetics , Nucleic Acid Conformation , Phosphoproteins/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/genetics , RNA/chemistry , RNA/metabolism , RNA Folding , RNA, Protozoan/genetics , RNA, Protozoan/metabolism , Telomerase/metabolism , Tetrahymena thermophila/genetics
...