Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; : e14203, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769776

RESUMEN

The relationship between aging and RNA biogenesis and trafficking is attracting growing interest, yet the precise mechanisms are unknown. The THO complex is crucial for mRNA cotranscriptional maturation and export. Herein, we report that the THO complex is closely linked to the regulation of lifespan. Deficiencies in Hpr1 and Tho2, components of the THO complex, reduced replicative lifespan (RLS) and are linked to a novel Sir2-independent RLS control pathway. Although transcript sequestration in hpr1Δ or tho2Δ mutants was countered by exosome component Rrp6, loss of this failed to mitigate RLS defects in hpr1Δ. However, RLS impairment in hpr1Δ or tho2Δ was counteracted by the additional expression of Nrd1-specific mutants that interacted with Rrp6. This effect relied on the interaction of Nrd1, a transcriptional regulator of aging-related genes, including ribosome biogenesis or RNA metabolism genes, with RNA polymerase II. Nrd1 overexpression reduced RLS in a Tho2-dependent pathway. Intriguingly, Tho2 deletion mirrored Nrd1 overexpression effects by inducing arbitrary Nrd1 chromatin binding. Furthermore, our genome-wide ChIP-seq analysis revealed an increase in the recruitment of Nrd1 to translation-associated genes, known to be related to aging, upon Tho2 loss. Taken together, these findings underscore the importance of Tho2-mediated Nrd1 escorting in the regulation of lifespan pathway through transcriptional regulation of aging-related genes.

2.
Pharmacol Res Perspect ; 11(5): e01135, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37740715

RESUMEN

The importance of vesicular monoamine transporter 2 (VMAT2) in dopamine regulation, which is considered crucial for neuropsychiatric disorders, is currently being studied. Moreover, the development of disease treatments using histone deacetylase (HDAC) inhibitors (HDACi) is actively progressing in various fields. Recently, research on the possibility of regulating neuropsychiatric disorders has been conducted. In this study, we evaluated whether VMAT2 expression increased by an HDACi can fine-tune neuropsychotic behavior, such as attention deficit hyperactivity disorder (ADHD) and protect against the cell toxicity through oxidized dopamine. First, approximately 300 candidate HDACi compounds were added to the SH-SY5Y dopaminergic cell line to identify the possible changes in the VMAT2 expression levels, which were measured using quantitative polymerase chain reaction. The results demonstrated, that treatment with pimelic diphenylamide 106 (TC-H 106), a class I HDACi, increased VMAT2 expression in both the SH-SY5Y cells and mouse brain. The increased VMAT2 expression induced by TC-H 106 alleviated the cytotoxicity attributed to 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium (MPP+ ) and free dopamine treatment. Moreover, dopamine concentrations, both intracellularly and in the synaptosomes, were significantly elevated by increased VMAT2 expression. These results suggest that dopamine concentration regulation by VMAT2 expression induced by TC-H 106 could alter several related behavioral aspects that was confirmed by attenuation of hyperactivity and impulsivity, which were major characteristics of animal model showing ADHD-like behaviors. These results indicate that HDACi-increased VMAT2 expression offers sufficient protections against dopaminergic cell death induced by oxidative stress. Thus, the epigenetic approach could be considered as therapeutic candidate for neuropsychiatric disease regulation.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neuroblastoma , Humanos , Animales , Ratones , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Proteínas de Transporte Vesicular de Monoaminas/genética , Citoprotección , Dopamina , Oxidopamina
3.
Front Pharmacol ; 14: 1163970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274097

RESUMEN

Anoctamin 1 (ANO1), a drug target for various cancers, including prostate and oral cancers, is an intracellular calcium-activated chloride ion channel that plays various physiopathological roles, especially in the induction of cancer growth and metastasis. In this study, we tested a novel compound isolated from Schisandra sphenanthera, known as schisandrathera D, for its inhibitory effect on ANO1. Schisandrathera D dose-dependently suppressed the ANO1 activation-mediated decrease in fluorescence of yellow fluorescent protein; however, it did not affect the adenosine triphosphate-induced increase in the intracellular calcium concentration or forskolin-induced cystic fibrosis transmembrane conductance regulator activity. Specifically, schisandrathera D gradually decreased the levels of ANO1 protein and significantly reduced the cell viability in ANO1-expressing cells when compared to those in ANO1-knockout cells. These effects could be attributed to the fact that schisandrathera D displayed better binding capacity to ANO1 protein than the previously known ANO1 inhibitor, Ani9. Finally, schisandrathera D increased the levels of caspase-3 and cleaved poly (ADP-ribose) polymerase 1, thereby indicating that its anticancer effect is mediated through apoptosis. Thus, this study highlights that schisandrathera D, which reduces ANO1 protein levels, has apoptosis-mediated anticancer effects in prostate and oral cancers, and thus, can be further developed into an anticancer agent.

4.
Pharmaceutics ; 15(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37242764

RESUMEN

Tissue engineering is a sophisticated field that involves the integration of various disciplines, such as clinical medicine, material science, and life science, to repair or regenerate damaged tissues and organs. To achieve the successful regeneration of damaged or diseased tissues, it is necessary to fabricate biomimetic scaffolds that provide structural support to the surrounding cells and tissues. Fibrous scaffolds loaded with therapeutic agents have shown considerable potential in tissue engineering. In this comprehensive review, we examine various methods for fabricating bioactive molecule-loaded fibrous scaffolds, including preparation methods for fibrous scaffolds and drug-loading techniques. Additionally, we delved into the recent biomedical applications of these scaffolds, such as tissue regeneration, inhibition of tumor recurrence, and immunomodulation. The aim of this review is to discuss the latest research trends in fibrous scaffold manufacturing methods, materials, drug-loading methods with parameter information, and therapeutic applications with the goal of contributing to the development of new technologies or improvements to existing ones.

5.
Biomed Pharmacother ; 153: 113373, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35785700

RESUMEN

Anoctamin 1 (ANO1) is a calcium-activated chloride channel found in various cell types and is overexpressed in non-small cell lung cancer (NSCLC), a major cause of cancer-related mortality. With the rising interest in development of druggable compounds for NSCLC, there has been a corresponding rise in interest in ANO1, a novel drug target for NSCLC. However, as ANO1 inhibitors that have been discovered simultaneously exhibit both the functions of an inhibition of ANO1 channel as well as a reduction of ANO1 protein levels, it is unclear which of the two functions directly causes the anticancer effect. In this study, verteporfin, a chemical compound that reduces ANO1 protein levels was identified through high-throughput screening. Verteporfin did not inhibit ANO1-induced chloride secretion but reduced ANO1 protein levels in a dose-dependent manner with an IC50 value of ~300 nM. Moreover, verteporfin inhibited neither P2Y receptor-induced intracellular Ca2+ mobilization nor cystic fibrosis transmembrane conductance regulator (CFTR) channel activity, and molecular docking studies revealed that verteporfin bound to specific sites of ANO1 protein. Confirming that verteporfin reduces ANO1 protein levels, we then investigated the molecular mechanisms involved in its effect on NSCLC cells. Interestingly, verteporfin decreased ANO1 protein levels, the EGFR-STAT3 pathway as well as ANO1 mRNA expression. Verteporfin reduced the viability of ANO1-expressing cells (PC9, and gefitinib-resistant PC9) and induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage. However, it did not affect hERG channel activity. These results show that the anticancer mechanism of verteporfin is caused via the down-regulation of ANO1.


Asunto(s)
Anoctamina-1 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas de Neoplasias , Verteporfina , Anoctamina-1/genética , Anoctamina-1/metabolismo , Calcio/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Canales de Cloruro/metabolismo , Regulación hacia Abajo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Verteporfina/farmacología
7.
Prog Mol Biol Transl Sci ; 181: 271-287, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34127196

RESUMEN

Generation of proper models for studying human genetic diseases has been hindered until recently by the scarcity of primary cell samples from genetic disease patients and inefficient genetic modification tools. However, recent advances in clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology and human induced pluripotent stem cells (hiPSCs) have provided an opportunity to explore the function of pathogenic variants and obtain gene-corrected cells for autologous cell therapy. In this chapter, we address recent applications of CRISPR/Cas9 to hiPSCs in genetic diseases, including neurodegenerative, cardiovascular, and rare diseases.


Asunto(s)
Edición Génica , Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Humanos
8.
Cells ; 10(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807329

RESUMEN

The presence of brown adipocytes within white adipose tissue is associated with phenotypes that exhibit improved metabolism and proper body weight maintenance. Therefore, a variety of dietary agents that facilitate the browning of white adipocytes have been investigated. In this study, we screened a natural product library comprising 133 compounds with the potential to promote the browning of white adipocytes, and found that D-mannitol induces the browning of 3T3-L1 adipocytes by enhancing the expression of brown fat-specific genes and proteins, and upregulating lipid metabolism markers. D-mannitol also increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase 1 (ACC), suggesting a possible role in lipolysis and fat oxidation. Moreover, an increase in the expression of genes associated with D-mannitol-induced browning was strongly correlated with the activation of the ß3-adrenergic receptor as well as AMPK, protein kinase A (PKA), and PPARγ coactivator 1α (PGC1α). D-mannitol effectively reduced the body weight of mice fed a high-fat diet, and increased the expression of ß1-oxidation and energy expenditure markers, such as Cidea, carnitine palmityl transferase 1 (CPT1), uncoupling protein 1 (UCP1), PGC1α, and acyl-coenzyme A oxidase (ACOX1) in the inguinal white adipose tissue. Our findings suggest that D-mannitol plays a dual regulatory role by inducing the generation of a brown fat-like phenotype and enhancing lipid metabolism. These results indicate that D-mannitol can function as an anti-obesity supplement.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Manitol/farmacología , Receptores Adrenérgicos beta 3/metabolismo , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación de la Expresión Génica/efectos de los fármacos , Manitol/química , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
9.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921050

RESUMEN

Melanoma is known to aggressively metastasize and is one of the prominent causes of skin cancer mortality. This study was designed to assess the molecular mechanism of decursinol angelate (DA) against murine melanoma cell line (B16F10 cells). Treatment of DA resulted in growth inhibition and cell cycle arrest at G0/G1 (p < 0.001) phase, evaluated through immunoblotting. Moreover, autophagy-related proteins such as ATG-5 (p < 0.0001), ATG-7 (p < 0.0001), beclin-1 (p < 0.0001) and transition of LC3-I to LC3-II (p < 0.0001) were markedly decreased, indicating autophagosome inhibition. Additionally, DA treatment triggered apoptotic events which were corroborated by the occurrence of distorted nuclei, elevated reactive oxygen species (ROS) levels and reduction in the mitochondrial membrane potential. Subsequently, there was an increase in the expression of pro-apoptotic protein Bax in a dose-dependent manner, with the corresponding downregulation of Bcl-2 expression and cytochrome C expression following 24 h DA treatment in A375.SM and B16F10 cells. We substantiated our results for apoptotic occurrence through flow cytometry in B16F10 cells. Furthermore, we treated B16F10 cells with N-acetyl-L-cysteine (NAC). NAC treatment upregulated ATG-5 (p < 0.0001), beclin-1 (p < 0.0001) and LC3-I to LC3-II (p < 0.0001) conversion, which was inhibited in the DA treatment group. We also noticed a systematic upregulation of important markers for progression of G1 cell phase such as CDK-2 (p < 0.029), CDK-4 (p < 0.036), cyclin D1 (p < 0.0003) and cyclin E (p < 0.020) upon NAC treatment. In addition, we also observed a significant fold reduction (p < 0.05) in ROS fluorescent intensity and the expression of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase-9 (p > 0.010) and cleaved caspase-3 (p < 0.0001). NAC treatment was able to ameliorate DA-induced apoptosis and cell cycle arrest to support our finding. Our in vivo xenograft model also revealed similar findings, such as downregulation of CDK-2 (p < 0.0001) and CDK-4 (p < 0.0142) and upregulation of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase 3 (p < 0.0001) and cleaved caspase 9 (p < 0.0001). In summary, our study revealed that DA is an effective treatment against B16F10 melanoma cells and xenograft mice model.


Asunto(s)
Apoptosis , Benzopiranos/farmacología , Butiratos/farmacología , Melanoma/patología , Neoplasias Cutáneas/patología , Acetilcisteína/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Benzopiranos/toxicidad , Butiratos/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Melanoma Experimental/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
10.
Bone ; 142: 115707, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141068

RESUMEN

Excessive bone resorption mediated by mature osteoclasts can cause osteoporosis, leading to fragility fractures. Therefore, an effective therapeutic strategy for anti-osteoporosis drugs is the reduction of osteoclast activity. In this study, the osteoclast inhibitory activity of a novel compound, N-phenyl-methylsulfonamido-acetamide (PMSA), was examined. PMSA treatment inhibited receptor activator of nuclear factor kappa B ligand (RNAKL)-induced osteoclast differentiation in bone marrow-derived macrophage cells (BMMs). We investigated two PMSAs, N-2-(3-acetylphenyl)-N-2-(methylsulfonyl)-N-1-[2-(phenylthio)phenyl] glycinamide (PMSA-3-Ac), and N-2-(5-chloro-2-methoxyphenyl)-N-2-(methylsulfonyl)-N-1-[2-(phenylthio)phenyl]glycinamide (PMSA-5-Cl), to determine their effects on osteoclast differentiation. PMSAs inhibited the signaling pathways at the early stage. PMSA-3-Ac inhibited tumor necrosis factor receptor-associated factor 6 (TRAF6) expression, whereas PMSA-5-Cl suppressed the mitogen-activated protein kinase (MAPK) signaling pathways. However, both PMSAs inhibited the master transcription factor, nuclear factor of activated T cell cytoplasmic-1 (NFATc1), by blocking nuclear localization. An in vivo study of PMSAs was performed in an ovariectomized (OVX) mouse model, and PMSA-5-Cl prevented bone loss in OVX mice. Therefore, our results suggested that PMSAs, specifically PMSA-5-Cl, may serve as a potential therapeutic agent for postmenopausal osteoporosis.


Asunto(s)
Resorción Ósea , Preparaciones Farmacéuticas , Acetamidas , Animales , Resorción Ósea/tratamiento farmacológico , Diferenciación Celular , Estrógenos/farmacología , Femenino , Humanos , Ratones , Factores de Transcripción NFATC , Osteoclastos , Osteogénesis , Ovariectomía , Ligando RANK
11.
Molecules ; 25(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096734

RESUMEN

Osteoclasts are large, multinucleated cells responsible for bone resorption and are induced in response to the regulatory activity of receptor activator of nuclear factor-kappa B ligand (RANKL). Excessive osteoclast activity causes pathological bone loss and destruction. Many studies have investigated molecules that specifically inhibit osteoclast activity by blocking RANKL signaling or bone resorption. In recent years, we screened compounds from commercial libraries to identify molecules capable of inhibiting RANKL-induced osteoclast differentiation. Consequently, we reported some compounds that are effective at attenuating osteoclast activity. In this study, we found that N-[2-(4-acetyl-1-piperazinyl)phenyl]-2-(3-methylphenoxy)acetamide (NAPMA) significantly inhibited the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cells from bone marrow-derived macrophages in a dose-dependent manner, without cytotoxic effects. NAPMA downregulated the expression of osteoclast-specific markers, such as c-Fos, NFATc1, DC-STAMP, cathepsin K, and MMP-9, at the transcript and protein levels. Accordingly, bone resorption and actin ring formation were decreased in response to NAPMA treatment. Furthermore, we demonstrated the protective effect of NAPMA against ovariectomy-induced bone loss using micro-CT and histological analysis. Collectively, the results showed that NAPMA inhibited osteoclast differentiation and attenuated bone resorption. It is thus a potential drug candidate for the treatment of osteoporosis and other bone diseases associated with excessive bone resorption.


Asunto(s)
Osteoclastos/efectos de los fármacos , Osteoporosis , Ovariectomía , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Endogámicos C57BL , Osteoporosis/tratamiento farmacológico , Osteoporosis/cirugía , Relación Estructura-Actividad
12.
Sci Rep ; 10(1): 12089, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694555

RESUMEN

Histone modifications, including histone lysine methylation, regulate gene expression in the vasculature, and targeting tumor blood vessels through histone modification decreases tumor growth. SETD8, a methyltransferase that catalyzes the mono-methylation of histone H4 lysine 20 is known to promote tumorigenesis in various cancers and its high levels of expression are related to poor prognosis. However, the detailed mechanisms by which SETD8 stimulates tumor progression and angiogenesis are still not well understood. Recent studies have demonstrated that, in vitro, BVT-948 efficiently and selectively suppresses SETD8 activity and histone methylation levels. In this study, we showed that BVT-948-mediated SETD8 inhibition in HUVECs results in an inhibition of angiogenesis. Inhibition of SETD8 not only inhibited angiogenesis but also disrupted actin stress fiber formation and induced cell cycle arrest at S phase. These effects were accompanied by increased HES-1 expression levels, decreased osteopontin levels, and a decreased differentiation of human induced pluripotent stem cells into endothelial cells. Interestingly, BVT-948 treatment reduced pathological angiogenesis in mouse OIR model. These data illustrate the mechanisms by which SETD8 regulates angiogenesis and may enable the use of a SETD8 inhibitor to treat various pathological conditions that are known to be associated with excessive angiogenesis, including and tumor growth.


Asunto(s)
Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/genética , Factor de Transcripción HES-1/genética , Actinas/metabolismo , Biomarcadores , Línea Celular Tumoral , Proliferación Celular , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo
13.
Biology (Basel) ; 9(5)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370249

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a leading form of chronic liver disease, with few biomarkers and treatment options currently available. Non-alcoholic steatohepatitis (NASH), a progressive disease of NAFLD, may lead to fibrosis, cirrhosis, and hepatocellular carcinoma. Epigenetic modification can contribute to the progression of NAFLD causing non-alcoholic steatohepatitis (NASH), in which the exact role of epigenetics remains poorly understood. To identify potential therapeutics for NASH, we tested small-molecule inhibitors of the epigenetic target histone methyltransferase EZH2, Tazemetostat (EPZ-6438), and UNC1999 in STAM NASH mice. The results demonstrate that treatment with EZH2 inhibitors decreased serum TNF-alpha in NASH. In this study, we investigated that inhibition of EZH2 reduced mRNA expression of inflammatory cytokines and fibrosis markers in NASH mice. In conclusion, these results suggest that EZH2 may present a promising therapeutic target in the treatment of NASH.

14.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230901

RESUMEN

Drug resistance in epithelial ovarian cancer (EOC) is reportedly attributed to the existence of cancer stem cells (CSC), because in most cancers, CSCs still remain after chemotherapy. To overcome this limitation, novel therapeutic strategies are required to prevent cancer recurrence and chemotherapy-resistant cancers by targeting cancer stem cells (CSCs). We screened an FDA-approved compound library and found four voltage-gated calcium channel blockers (manidipine, lacidipine, benidipine, and lomerizine) that target ovarian CSCs. Four calcium channel blockers (CCBs) decreased sphere formation, viability, and proliferation, and induced apoptosis in ovarian CSCs. CCBs destroyed stemness and inhibited the AKT and ERK signaling pathway in ovarian CSCs. Among calcium channel subunit genes, three L- and T-type calcium channel genes were overexpressed in ovarian CSCs, and downregulation of calcium channel genes reduced the stem-cell-like properties of ovarian CSCs. Expressions of these three genes are negatively correlated with the survival rate of patient groups. In combination therapy with cisplatin, synergistic effect was shown in inhibiting the viability and proliferation of ovarian CSCs. Moreover, combinatorial usage of manidipine and paclitaxel showed enhanced effect in ovarian CSCs xenograft mouse models. Our results suggested that four CCBs may be potential therapeutic drugs for preventing ovarian cancer recurrence.


Asunto(s)
Antihipertensivos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Dihidropiridinas/farmacología , Reposicionamiento de Medicamentos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Células Madre Neoplásicas/efectos de los fármacos , Nitrobencenos , Neoplasias Ováricas , Paclitaxel/farmacología , Piperazinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Microambiente Tumoral/efectos de los fármacos
15.
Biochem Biophys Res Commun ; 526(1): 158-164, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32201081

RESUMEN

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with an overall 5-year survival rate of only 30%. EOC is associated with drug resistance, frequent recurrence, and poor prognosis. A major contributor toward drug resistance might be cancer stem cells (CSCs), which may remain after chemotherapy. Here, we aimed to find therapeutic agents that target ovarian CSCs. We performed a high-throughput screening using the Clinical Compound Library with a sphere culture of A2780 EOCs. Poziotinib, a pan-human epidermal growth factor receptor (HER) inhibitor, decreased sphere formation, viability, and proliferation, and induced G1 cell cycle arrest and apoptosis in ovarian CSCs. In addition, poziotinib suppressed stemness and disrupted downstream signaling of Wnt/ß-catenin, Notch, and Hedgehog pathways, which contribute to many characteristics of CSCs. Interestingly, HER4 was overexpressed in ovarian CSCs and Poziotinib reduced the phosphorylation of STAT5, AKT, and ERK, which are regulated by HER4. Our results suggest that HER4 may be a promising therapeutic target for ovarian CSCs, and that poziotinib may be an effective therapeutic option for the prevention of ovarian cancer recurrence.


Asunto(s)
Células Madre Neoplásicas/patología , Neoplasias Ováricas/patología , Quinazolinas/farmacología , Receptor ErbB-4/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Apoptosis/efectos de los fármacos , Apoptosis/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Fase G1/efectos de los fármacos , Fase G1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/genética , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , beta Catenina/metabolismo
16.
Food Chem Toxicol ; 131: 110582, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31220535

RESUMEN

Alcoholism is a serious addiction that can lead to various health complications such as liver fibrosis, steatosis, and cirrhosis. Carvacrol is present in many plant-based essential oils and used as a preservative in the food industry. In this study, we have investigated the hepatoprotective role of carvacrol against ethanol-induced liver toxicity in mice. To determine the effect of carvacrol on liver injury parameters, 5 doses of 50% ethanol (10 mL/kg body weight) were orally administered every 12 h for inducing the hepatotoxicity in experimental mice. Interestingly, carvacrol pre-treatment (50 and 100 mg/kg) reversed the ethanol-induced effects on liver function, antioxidant markers, matrix metalloproteinases activities, and histological changes. Moreover, carvacrol binds to the active pocket of cytochrome P450 (Cyt P450) and inhibits its expression. Thus, our finding suggests carvacrol can be used as an adjuvant for the amelioration of alcohol-induced hepatotoxicity.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/uso terapéutico , Hígado Graso Alcohólico/prevención & control , Monoterpenos/uso terapéutico , Sustancias Protectoras/uso terapéutico , Animales , Autofagia/efectos de los fármacos , Consumo Excesivo de Bebidas Alcohólicas , Dominio Catalítico , Cimenos , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado Graso Alcohólico/patología , Hígado/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Metaloproteinasas de la Matriz/metabolismo , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Monoterpenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/metabolismo , Unión Proteica
17.
Sci Total Environ ; 679: 365-377, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31085416

RESUMEN

Human health and environment have been continuously getting exposure to toxic chemicals including nanomaterial; therefore, nontoxicity has recently attracted huge amount of attention. In this study, RU-AgNPs were synthesized by a green synthesis procedure and evaluated for their toxicity in human umbilical vein endothelial cells (HUVECs) as well as on zebrafish embryos via apoptotic pathway. The synthesized RU-AgNPs were average in size (20-25 nm) with a negative surface charge of -13.43 mV. As a result, RU-AgNPs potentiated the formation of reactive oxygen species (ROS) in HUVECs as confirmed by the results of immunoblotting analysis using apoptotic markers, such as Bax, Bcl2, and cytochrome C. Moreover, the induction of apoptosis in HUVECs was also authenticated in a dose-dependent manner after the treatment with RU-AgNPs by the Incucyte analysis. In vivo trials conducted on zebrafish visualized the mortality, malformation, and imbalanced in the heart rate, and cell death of the whole embryo, including severe morphological changes in the yolk sac and the tail of zebrafish. Furthermore, the results of western blot analysis demonstrated the increasing intensity of apoptotic biomarkers such as Bax, Bcl2, and Cyto C, including enhanced production of ROS, validating the cell death in zebrafish larvae. In addition, chemically functionalized silver nanoparticles found to be more cytotoxic than biogenic functionalized silver nanoparticles. Above-mentioned findings clearly demonstrate that Ru-AgNPs cause the toxicity via ROS-induced apoptotic pathway. Therefore, it is necessary to decide RU-AgNPs toxicity levels before being used in any biomedical application.


Asunto(s)
Apoptosis , Embrión no Mamífero/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Estrés Oxidativo , Plata/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Rumex/metabolismo , Pez Cebra
18.
Sensors (Basel) ; 19(3)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717205

RESUMEN

A variety of in-vehicle infotainment (IVI) devices and services have been developed by many vehicle vendors and software companies, which include navigation systems, cameras, speakers, headrest displays, and heating seat. However, there has not been enough research on how to effectively control and manage numerous IVI resources (devices and contents), so as to provide users with more enhanced services. This paper proposes a framework of resource control for IVI services so as to efficiently manage the IVI resources within an automobile. Differently from conventional IVI systems, in the proposed scheme, the IVI-Master is newly introduced for overall control of IVI resources, and IVI users are divided into owner and users. In addition, the IVI resources are classified as personal resources and shared resources, which are managed by the IVI-Master using the Lightweight Machine-to-Machine (LWM2M) standard. The proposed IoT-based IVI resource control scheme was implemented and tested. The experimental results showed that the proposed scheme can be used to effectively manage IVI resources for users. Additionally, the proposed resource control scheme shows lower bandwidth usage than the existing scheme.

19.
Sci Rep ; 8(1): 14969, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297806

RESUMEN

Sepsis is one of the most common clinical syndromes that causes death and disability. Although many studies have developed drugs for sepsis treatment, none have decreased the mortality rate. The aim of this study was to identify a novel treatment option for sepsis using the library of integrated network-based cellular signatures (LINCS) L1000 perturbation dataset based on an in vitro and in vivo sepsis model. Sepsis-related microarray studies of early-stage inflammatory processes in patients and innate immune cells were collected from the Gene Expression Omnibus (GEO) data repository and used for candidate drug selection based on the LINCS L1000 perturbation dataset. The anti-inflammatory effects of the selected candidate drugs were analyzed using activated macrophage cell lines. CGP-60474, an inhibitor of cyclin-dependent kinase, was the most potent drug. It alleviated tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in activated macrophages by downregulating the NF-κB activity, and it reduced the mortality rate in LPS induced endotoxemia mice. This study shows that CGP-60474 could be a potential therapeutic candidate to attenuate the endotoxemic process. Additionally, the virtual screening strategy using the LINCS L1000 perturbation dataset could be a cost and time effective tool in the early stages of drug development.


Asunto(s)
Reposicionamiento de Medicamentos/métodos , Pirimidinas/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Bases de Datos Factuales , Endotoxemia/sangre , Endotoxemia/tratamiento farmacológico , Endotoxemia/inmunología , Humanos , Interleucina-6/sangre , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/inmunología , Sepsis/sangre , Sepsis/inmunología
20.
Oncotarget ; 8(41): 71012-71023, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-29050339

RESUMEN

PURPOSE: To investigate the factors associated with hepatobiliary phase (HBP) enhancement at gadoxetic acid-enhanced magnetic resonance imaging (MRI) and to determine whether HBP images could be used to predict prognosis in patients with colorectal cancer liver metastasis (CRLM). RESULTS: Of the 96 total nodules, 65 and 31 nodules were in the mixed and clearly hypointense groups, respectively. In the 55 nodules without preoperative chemotherapy, organic anionic transporting polypeptide 1B3 (OATP1B3) expression was a significant factor regarding the HBP enhancement (P=0.042). In this subgroup, nodules with OATP1B3 expression displayed a significantly higher relative intensity ratio on the HBP image (RIRpost) and relative enhancement ratio (RER) than those lacking this marker (P=0.024, 0.003, respectively). No significant factor was associated with the enhancement pattern in the chemotherapy group. The mixed hypointense group displayed worse survival rates (P=0.002). MATERIALS AND METHODS: Ninety-six patients who underwent pre-operative liver MRI and surgical resection for CRLM from January 2010 to June 2012 were retrospectively analyzed. We qualitatively evaluated the HBP enhancement pattern of CRLMs and classified them into mixed and clearly hypointense groups. For quantitative measurement, the RIRpost and RER were analyzed. To investigate factors associated with HBP enhancement, tumor components (fibrosis, necrosis, and cellularity) and OATP1B3 expression were scored on a 4-point scale. Univariate and multivariate analyses were done to determine significant factors for visual enhancement and quantitative parameters. CONCLUSIONS: OATP1B3 expression is associated with mixed hypointense CRLMs without chemotherapy. Signal intensity on HBP has potential usefulness to predict prognosis in CRLMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...