Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 143
1.
J Pineal Res ; 76(4): e12958, 2024 May.
Article En | MEDLINE | ID: mdl-38747060

Endothelial-to-mesenchymal transition (EndMT) is a complex biological process of cellular transdifferentiation by which endothelial cells (ECs) lose their characteristics and acquire mesenchymal properties, leading to cardiovascular remodeling and complications in the adult cardiovascular diseases environment. Melatonin is involved in numerous physiological and pathological processes, including aging, and has anti-inflammatory and antioxidant activities. This molecule is an effective therapeutic candidate for preventing oxidative stress, regulating endothelial function, and maintaining the EndMT balance to provide cardiovascular protection. Although recent studies have documented improved cardiac function by melatonin, the mechanism of action of melatonin on EndMT remains unclear. The present study investigated the effects of melatonin on induced EndMT by transforming growth factor-ß2/interleukin-1ß in both in vivo and in vitro models. The results revealed that melatonin reduced the migratory ability and reactive oxygen species levels of the cells and ameliorated mitochondrial dysfunction in vitro. Our findings indicate that melatonin prevents endothelial dysfunction and inhibits EndMT by activating related pathways, including nuclear factor kappa B and Smad. We also demonstrated that this molecule plays a crucial role in restoring cardiac function by regulating the EndMT process in the ischemic myocardial condition, both in vessel organoids and myocardial infarction (MI) animal models. In conclusion, melatonin is a promising agent that attenuates EC dysfunction and ameliorates cardiac damage compromising the EndMT process after MI.


Melatonin , NF-kappa B , Melatonin/pharmacology , Animals , NF-kappa B/metabolism , Epithelial-Mesenchymal Transition/drug effects , Humans , Signal Transduction/drug effects , Mice , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Male , Myocardial Infarction/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Reactive Oxygen Species/metabolism
2.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659053

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Alzheimer Disease , Amyloid beta-Peptides , Organoids , Pluripotent Stem Cells , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Organoids/metabolism , Organoids/pathology , Pluripotent Stem Cells/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/antagonists & inhibitors , tau Proteins/metabolism , tau Proteins/genetics , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Brain/metabolism , Brain/pathology , Models, Biological
3.
Neuron ; 112(4): 611-627.e8, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38086372

Social animals compete for limited resources, resulting in a social hierarchy. Although different neuronal subpopulations in the medial prefrontal cortex (mPFC), which has been mechanistically implicated in social dominance behavior, encode distinct social competition behaviors, their identities and associated molecular underpinnings have not yet been identified. In this study, we found that mPFC neurons projecting to the nucleus accumbens (mPFC-NAc) encode social winning behavior, whereas mPFC neurons projecting to the ventral tegmental area (mPFC-VTA) encode social losing behavior. High-throughput single-cell transcriptomic analysis and projection-specific genetic manipulation revealed that the expression level of POU domain, class 3, transcription factor 1 (Pou3f1) in mPFC-VTA neurons controls social hierarchy. Optogenetic activation of mPFC-VTA neurons increases Pou3f1 expression and lowers social rank. Together, these data demonstrate that discrete activity and gene expression in separate mPFC projections oppositely orchestrate social competition and hierarchy.


Nucleus Accumbens , Ventral Tegmental Area , Animals , Ventral Tegmental Area/physiology , Nucleus Accumbens/physiology , Social Behavior , Prefrontal Cortex/physiology , Neurons
4.
Exp Mol Med ; 55(4): 844-859, 2023 04.
Article En | MEDLINE | ID: mdl-37009795

Pathogenic variants of KCNQ4 cause symmetrical, late-onset, progressive, high-frequency-affected hearing loss, which eventually involves all frequencies with age. To understand the contribution of KCNQ4 variants to hearing loss, we analyzed whole-exome and genome sequencing data from patients with hearing loss and individuals whose hearing phenotypes were unknown. In KCNQ4, we identified seven missense variants and one deletion variant in 9 hearing loss patients and 14 missense variants in the Korean population with an unknown hearing loss phenotype. The p.R420W and p.R447W variants were found in both cohorts. To investigate the effects of these variants on KCNQ4 function, we performed whole-cell patch clamping and examined their expression levels. Except for p.G435Afs*61, all KCNQ4 variants exhibited normal expression patterns similar to those of wild-type KCNQ4. The p.R331Q, p.R331W, p.G435Afs*61, and p.S691G variants, which were identified in patients with hearing loss, showed a potassium (K+) current density lower than or similar to that of p.L47P, a previously reported pathogenic variant. The p.S185W and p.R216H variants shifted the activation voltage to hyperpolarized voltages. The channel activity of the p.S185W, p.R216H, p.V672M, and p.S691G KCNQ4 proteins was rescued by the KCNQ activators retigabine or zinc pyrithione, whereas p.G435Afs*61 KCNQ4 proteins were partially rescued by sodium butyrate, a chemical chaperone. Additionally, the structure of the variants predicted using AlphaFold2 showed impaired pore configurations, as did the patch-clamp data. Our findings suggest that KCNQ4 variants may be overlooked in hearing loss that starts in adulthood. Some of these variants are medically treatable; hence, genetic screening for KCNQ4 is important.


Deafness , Hearing Loss , Humans , Pedigree , Hearing Loss/genetics , Deafness/genetics , Hearing , Mutation, Missense , KCNQ Potassium Channels/genetics
6.
Front Immunol ; 14: 1101808, 2023.
Article En | MEDLINE | ID: mdl-36776879

Introduction: Despite of massive endeavors to characterize inflammation in COVID-19 patients, the core network of inflammatory mediators responsible for severe pneumonia stillremain remains elusive. Methods: Here, we performed quantitative and kinetic analysis of 191 inflammatory factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347 confirmed COVID-19 pneumonia patients (sample n = 875), including 8 deceased patients. Results: Differential expression analysis showed that 76% of plasmaproteins (145 factors) were upregulated in severe COVID-19 patients comparedwith moderate patients, confirming overt inflammatory responses in severe COVID-19 pneumonia patients. Global correlation analysis of the plasma factorsrevealed two core inflammatory modules, core I and II, comprising mainly myeloid cell and lymphoid cell compartments, respectively, with enhanced impact in a severity-dependent manner. We observed elevated IFNA1 and suppressed IL12p40, presenting a robust inverse correlation in severe patients, which was strongly associated with persistent hyperinflammation in 8.3% of moderate pneumonia patients and 59.4% of severe patients. Discussion: Aberrant persistence of pulmonary and systemic inflammation might be associated with long COVID-19 sequelae. Our comprehensive analysis of inflammatory mediators in plasmarevealed the complexity of pneumonic inflammation in COVID-19 patients anddefined critical modules responsible for severe pneumonic progression.


COVID-19 , Humans , SARS-CoV-2 , Kinetics , Post-Acute COVID-19 Syndrome , Inflammation , Inflammation Mediators , Interferon-alpha
7.
Gut Liver ; 17(1): 139-149, 2023 01 15.
Article En | MEDLINE | ID: mdl-35611668

Background/Aims: A relationship between fatty liver and lung function impairment has been identified, and both are independently associated with metabolic dysfunction. However, the temporal relationship between changes in fatty liver status and lung function and their genome-wide association remain unclear. Methods: This longitudinal cohort consisted of subjects who received serial health check-ups, including liver ultrasonography and spirometry, for ≥3 years between 2003 and 2015. Lung function decline rates were classified as "slow" and "accelerated" and compared among four different sonographic changes in steatosis status: "normal," "improved," "worsened," and "persistent." A genome-wide association study was conducted between the two groups: normal/improved steatosis with a slow decline in lung function versus worsened/persistent steatosis with an accelerated decline in lung function. Results: Among 6,149 individuals, the annual rates of decline in forced vital capacity (FVC) and forced expiratory volume measured in the first second of exhalation (FEV1) were higher in the worsened/persistent steatosis group than in the normal/improved steatosis group. In multivariable analysis, persistent or worsened status of fatty liver was significantly associated with accelerated declines in FVC (persistent status, odds ratio [OR]=1.22, 95% confidence interval [CI]=1.04-1.44; worsened status, OR=1.30, 95% CI=1.12-1.50), while improved status of fatty liver was significantly associated with slow declines in FEV1 (OR=0.77, 95% CI=0.64-0.92). The PNPLA3 risk gene was most strongly associated with steatosis status change and accelerated declines in FVC (rs12483959, p=2.61×10-7) and FEV1 (rs2294433, p=3.69×10-8). Conclusions: Regression of fatty liver is related to lung function decline. Continuing efforts to improve fatty liver may preserve lung function, especially for subjects with a high genetic risk.


Lung , Non-alcoholic Fatty Liver Disease , Humans , Lung/diagnostic imaging , Non-alcoholic Fatty Liver Disease/genetics , Genome-Wide Association Study , Vital Capacity , Forced Expiratory Volume
8.
Exp Mol Med ; 54(11): 1862-1871, 2022 11.
Article En | MEDLINE | ID: mdl-36323850

Despite substantial advances in disease genetics, studies to date have largely focused on individuals of European descent. This limits further discoveries of novel functional genetic variants in other ethnic groups. To alleviate the paucity of East Asian population genome resources, we established the Korean Variant Archive 2 (KOVA 2), which is composed of 1896 whole-genome sequences and 3409 whole-exome sequences from healthy individuals of Korean ethnicity. This is the largest genome database from the ethnic Korean population to date, surpassing the 1909 Korean individuals deposited in gnomAD. The variants in KOVA 2 displayed all the known genetic features of those from previous genome databases, and we compiled data from Korean-specific runs of homozygosity, positively selected intervals, and structural variants. In doing so, we found loci, such as the loci of ADH1A/1B and UHRF1BP1, that are strongly selected in the Korean population relative to other East Asian populations. Our analysis of allele ages revealed a correlation between variant functionality and evolutionary age. The data can be browsed and downloaded from a public website ( https://www.kobic.re.kr/kova/ ). We anticipate that KOVA 2 will serve as a valuable resource for genetic studies involving East Asian populations.


Asian People , Exome , Humans , Asian People/genetics , Republic of Korea , Polymorphism, Single Nucleotide
9.
Front Genet ; 13: 990015, 2022.
Article En | MEDLINE | ID: mdl-36212160

Despite recent advancements in our understanding of genetic etiology and its molecular and physiological consequences, it is not yet clear what genetic features determine the inheritance pattern of a disease. To address this issue, we conducted whole exome sequencing analysis to characterize genetic variants in 1,180 Korean patients with neurological symptoms. The diagnostic yield for definitive pathogenic variant findings was 50.8%, after including 33 cases (5.9%) additionally diagnosed by reanalysis. Of diagnosed patients, 33.4% carried inherited variants. At the genetic level, autosomal recessive-inherited genes were characterized by enrichments in metabolic process, muscle organization and metal ion homeostasis pathways. Transcriptome and interactome profiling analyses revealed less brain-centered expression and fewer protein-protein interactions for recessive genes. The majority of autosomal recessive genes were more tolerant of variation, and functional prediction scores of recessively-inherited variants tended to be lower than those of dominantly-inherited variants. Additionally, we were able to predict the rates of carriers for recessive variants. Our results showed that genes responsible for neurodevelopmental disorders harbor different molecular mechanisms and expression patterns according to their inheritance patterns. Also, calculated frequency rates for recessive variants could be utilized to pre-screen rare neurodevelopmental disorder carriers.

10.
Orphanet J Rare Dis ; 17(1): 372, 2022 10 08.
Article En | MEDLINE | ID: mdl-36209187

BACKGROUND: Phase I of the Korean Undiagnosed Diseases Program (KUDP), performed for 3 years, has been completed. The Phase I program aimed to solve the problem of undiagnosed patients throughout the country and develop infrastructure, including a data management system and functional core laboratory, for long-term translational research. Herein, we share the clinical experiences of the Phase I program and introduce the activities of the functional core laboratory and data management system. RESULTS: During the program (2018-2020), 458 patients were enrolled and classified into 3 groups according to the following criteria: (I) those with a specific clinical assessment which can be verified by direct testing (32 patients); (II) those with a disease group with genetic and phenotypic heterogeneity (353 patients); and (III) those with atypical presentations or diseases unknown to date (73 patients). All patients underwent individualized diagnostic processes based on the decision of an expert consortium. Confirmative diagnoses were obtained for 242 patients (52.8%). The diagnostic yield was different for each group: 81.3% for Group I, 53.3% for Group II, and 38.4% for Group III. Diagnoses were made by next-generation sequencing for 204 patients (84.3%) and other genetic testing for 35 patients (14.5%). Three patients (1.2%) were diagnosed with nongenetic disorders. The KUDP functional core laboratory, with a group of experts, organized a streamlined research pipeline covering various resources, including animal models, stem cells, structural modeling and metabolic and biochemical approaches. Regular data review was performed to screen for candidate genes among undiagnosed patients, and six different genes were identified for functional research. We also developed a web-based database system that supports clinical cohort management and provides a matchmaker exchange protocol based on a matchbox, likely to reinforce the nationwide clinical network and further international collaboration. CONCLUSIONS: The KUDP evaluated the unmet needs of undiagnosed patients and established infrastructure for a data-sharing system and future functional research. The advancement of the KUDP may lead to sustainable bench-to-bedside research in Korea and contribute to ongoing international collaboration.


Undiagnosed Diseases , Databases, Factual , Humans , Information Dissemination , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Republic of Korea/epidemiology
11.
Orphanet J Rare Dis ; 17(1): 306, 2022 08 02.
Article En | MEDLINE | ID: mdl-35918773

BACKGROUND: Aminoacyl tRNA transferases play an essential role in protein biosynthesis, and variants of these enzymes result in various human diseases. FARSA, which encodes the α subunit of cytosolic phenylalanyl-tRNA synthetase, was recently reported as a suspected causal gene for multiorgan disorder. This study aimed to validate the pathogenicity of variants in the FARSA gene. RESULTS: Exome sequencing revealed novel compound heterozygous variants in FARSA, P347L and R475Q, from a patient who initially presented neonatal-onset failure to thrive, liver dysfunction, and frequent respiratory infections. His developmental milestones were nearly arrested, and the patient died at 28 months of age as a result of progressive hepatic and respiratory failure. The P347L variant was predicted to disrupt heterodimer interaction and failed to form a functional heterotetramer by structural and biochemical analyses. R475 is located at a highly conserved site and is reported to be involved in phenylalanine activation and transfer to tRNA. The R475Q mutant FARSA were co-purified with FARSB, but the mutant enzyme showed an approximately 36% reduction in activity in our assay relative to the wild-type protein. Additional functional analyses on variants from previous reports (N410K, F256L, R404C, E418D, and F277V) were conducted. The R404C variant from a patient waiting for organ transplantation also failed to form tetramers but the E418D, N410K, F256L, and F277V variants did not affect tetramer formation. In the functional assay, the N410K located at the phenylalanine-binding site exhibited no catalytic activity, whereas other variants (E418D, F256L and F277V) exhibited lower ATPase activity than wild-type FARSA at low phenylalanine concentrations. CONCLUSIONS: Our data demonstrated the pathogenicity of biallelic variants in FARSA and suggested the implication of hypomorphic variants in severe phenotypes.


Phenylalanine-tRNA Ligase , Humans , Infant, Newborn , Mutation/genetics , Phenylalanine , Phenylalanine-tRNA Ligase/chemistry , Phenylalanine-tRNA Ligase/genetics , RNA, Transfer/genetics , Exome Sequencing
12.
Adv Sci (Weinh) ; 9(23): e2201212, 2022 08.
Article En | MEDLINE | ID: mdl-35694866

Recent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed. New subgroups within 170 patients with cerebral amyloid pathology (Aß+) are revealed and the features of them are identified based on the top-rated targets constructing multi-omics factors of both whole (M-TPAD) and immune-focused models (M-IPAD). The authors explored the characteristics of subtypes and possible key-drivers for AD pathogenesis. Further in-depth studies showed that these subtypes are associated with longitudinal brain changes and autophagy pathways are main contributors. The significance of autophagy or clustering tendency is validated in peripheral blood mononuclear cells (PBMCs; n = 120 including 30 Aß- and 90 Aß+), induced pluripotent stem cell-derived human brain organoids/microglia (n = 12 including 5 Aß-, 5 Aß+, and CRISPR-Cas9 apolipoprotein isogenic lines), and human brain transcriptome (n = 78). Collectively, this study provides a strategy for precision medicine therapy and drug development for AD using integrative multi-omics analysis and network modelling.


Alzheimer Disease , Amyloidosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/metabolism , Amyloidosis/metabolism , Autophagy/genetics , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Microglia/metabolism , Microglia/pathology
13.
Gut Microbes ; 14(1): 2078612, 2022.
Article En | MEDLINE | ID: mdl-35634707

Nonalcoholic fatty liver disease (NAFLD) is associated with high carbohydrate (HC) intake. We investigated whether the relationship between carbohydrate intake and NAFLD is mediated by interactions between gut microbial modulation, impaired insulin response, and hepatic de novo lipogenesis (DNL). Stool samples were collected from 204 Korean subjects with biopsy-proven NAFLD (n = 129) and without NAFLD (n = 75). The gut microbiome profiles were analyzed using 16S rRNA amplicon sequencing. Study subjects were grouped by the NAFLD activity score (NAS) and percentage energy intake from dietary carbohydrate. Hepatic DNL-related transcripts were also analyzed (n = 90). Data from the Korean healthy twin cohort (n = 682), a large sample of individuals without NAFLD, were used for comparison and validation. A HC diet rather than a low carbohydrate diet was associated with the altered gut microbiome diversity according to the NAS. Unlike individuals from the twin cohort without NAFLD, the abundances of Enterobacteriaceae and Ruminococcaceae were significantly different among the NAS subgroups in NAFLD subjects who consumed an HC diet. The addition of these two microbial families, along with Veillonellaceae, significantly improved the diagnostic performance of the predictive model, which was based on the body mass index, age, and sex to predict nonalcoholic steatohepatitis in the HC group. In the HC group, two crucial regulators of DNL (SIRT1 and SREBF2) were differentially expressed among the NAS subgroups. In particular, kernel causality analysis revealed a causal effect of the abundance of Enterobacteriaceae on SREBF2 upregulation and of the surrogate markers of insulin resistance on NAFLD activity in the HC group. Consuming an HC diet is associated with alteration in the gut microbiome, impaired glucose homeostasis, and upregulation of hepatic DNL genes, altogether contributing to NAFLD pathogenesis.


Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Diet , Dietary Carbohydrates , Humans , Lipogenesis , Non-alcoholic Fatty Liver Disease/etiology , RNA, Ribosomal, 16S/genetics
14.
J Med Genet ; 59(11): 1075-1081, 2022 11.
Article En | MEDLINE | ID: mdl-35387801

BACKGROUND: Whole-exome sequencing-based diagnosis of rare diseases typically yields 40%-50% of success rate. Precise diagnosis of the patients with neuromuscular disorders (NMDs) has been hampered by locus heterogeneity or phenotypic heterogeneity. We evaluated the utility of transcriptome sequencing as an independent approach in diagnosing NMDs. METHODS: The RNA sequencing (RNA-Seq) of muscle tissues from 117 Korean patients with suspected Mendelian NMD was performed to evaluate the ability to detect pathogenic variants. Aberrant splicing and CNVs were inspected to identify additional causal genetic factors for NMD. Aberrant splicing events in Dystrophin (DMD) were investigated by using antisense oligonucleotides (ASOs). A non-negative matrix factorisation analysis of the transcriptome data followed by cell type deconvolution was performed to cluster samples by expression-based signatures and identify cluster-specific gene ontologies. RESULTS: Our pipeline called 38.1% of pathogenic variants exclusively from the muscle transcriptomes, demonstrating a higher diagnostic rate than that achieved via exome analysis (34.9%). The discovery of variants causing aberrant splicing allowed the application of ASOs to the patient-derived cells, providing a therapeutic approach tailored to individual patients. RNA-Seq data further enabled sample clustering by distinct gene expression profiles that corresponded to clinical parameters, conferring additional advantages over exome sequencing. CONCLUSION: The RNA-Seq-based diagnosis of NMDs achieves an increased diagnostic rate and provided pathogenic status information, which is not easily accessible through exome analysis.


Neuromuscular Diseases , Transcriptome , Humans , Transcriptome/genetics , Dystrophin/genetics , RNA, Messenger/genetics , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/genetics , Oligonucleotides, Antisense
15.
J Cell Mol Med ; 26(12): 3364-3377, 2022 06.
Article En | MEDLINE | ID: mdl-35488446

Transcriptome profiling of tubulointerstitial tissue in glomerulonephritis may reveal a potential tubulointerstitial injury-related biomarker. We profiled manually microdissected tubulointerstitial tissue from biopsy cores of 65 glomerulonephritis cases, including 43 patients with IgA nephropathy, 3 with diabetes mellitus nephropathy, 3 with focal segmental glomerulosclerosis, 3 with lupus nephritis, 4 with membranous nephropathy and 9 with minimal change disease, and additional 22 nephrectomy controls by RNA sequencing. A potential biomarker was selected based on the false discovery rate, and experiments were performed in TNF-α-stimulated primary cultured human tubular epithelial cells (hTECs). We identified 3037 genes with low expression and 2852 genes with high expression in the disease samples compared to the controls. Dual-specificity phosphatase 1 (DUSP1) exhibited universal low expression in various diseases (log2 fold change, -3.87), with the lowest false discovery rate (7.03E-132). In further experimental validation study, DUSP1 overexpression ameliorated inflammatory markers related to MAP kinase pathways in hTECs, while pharmacologic inhibition of DUSP1 increased these markers. The combination of DUSP1 overexpression with low-concentration corticosteroid treatment resulted in more potent suppression of inflammation than high-concentration corticosteroid treatment alone. The profiled transcriptomes provide insights into the pathophysiology of tubulointerstitial injury in kidney diseases and may reveal a potential therapeutic biomarker.


Glomerulonephritis, IGA , Glomerulonephritis , Biomarkers , Biopsy , Glomerulonephritis/drug therapy , Glomerulonephritis/genetics , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/metabolism , Humans , Phosphoric Monoester Hydrolases , RNA-Seq
16.
Liver Int ; 41(12): 2892-2902, 2021 12.
Article En | MEDLINE | ID: mdl-34358397

BACKGROUND AND AIMS: Bile acid (BA) dysregulation is related to not only metabolic diseases but also nonalcoholic fatty liver disease (NAFLD). We investigated whether circulating BA levels are altered according to the histological severity of NAFLD independent of metabolic derangements. METHODS: Global metabolic profiling and targeted BA analysis using sera collected from biopsy-proven no-NAFLD (n = 67), nonalcoholic fatty liver (NAFL) (n = 99), and nonalcoholic steatohepatitis (NASH, n = 75) subjects were performed sequentially. Circulating metabolome analysis integrated with the hepatic transcriptome was performed to elucidate the mechanistic basis of altered circulating BA profiles after stratification by obesity (body mass index ≤ 25 kg/m2 ). Circulating BA alterations were also validated in an independent validation cohort (29 no-NAFLD, 70 NAFL and 37 NASH). RESULTS: Global profiling analysis showed that BA was the metabolite significantly altered in NASH compared to NAFL. Targeted BA analysis demonstrated that glyco-/tauro-conjugated primary BAs were commonly increased in nonobese and obese NASH, while unconjugated primary BAs increased only in nonobese NASH. These characteristic primary BA level changes were maintained even after stratification according to diabetes status and were replicated in the independent validation cohort. Compared to nonobese NAFL patients, nonobese NASH patients exhibited upregulated hepatic expression of CYP8B1. CONCLUSIONS: BA metabolism is dysregulated as the histological severity of NAFLD worsens, independent of obesity and diabetes status; dysregulation is more prominent in nonobese NAFLD patients. Metabolome-driven omics approach provides new insight into our understanding of altered BA metabolism associated with individual phenotypes of NAFLD.


Diabetes Mellitus , Non-alcoholic Fatty Liver Disease , Bile Acids and Salts/metabolism , Humans , Liver/pathology , Non-alcoholic Fatty Liver Disease/complications , Obesity/complications , Obesity/metabolism
17.
Cancers (Basel) ; 13(13)2021 Jun 22.
Article En | MEDLINE | ID: mdl-34206586

Liposarcoma (LPS) is an adult soft tissue malignancy that arises from fat tissue, where well-differentiated (WD) and dedifferentiated (DD) forms are the most common. DDLPS represents the progression of WDLPS into a more aggressive high-grade and metastatic form. Although a few DNA copy-number amplifications are known to be specifically found in WD- or DDLPS, systematic genetic differences that signify subtype determination between WDLPS and DDLPS remain unclear. Here, we profiled the genome and transcriptome of 38 LPS tumors to uncover the genetic signatures of subtype differences. Replication-dependent histone (RD-HIST) mRNAs were highly elevated and their regulation was disrupted in a subset of DDLPS, increasing cellular histone molecule levels, as measured using RNA-seq (the averaged fold change of 53 RD-HIST genes between the DD and WD samples was 10.9) and immunohistochemistry. The change was not observed in normal tissues. Integrated whole-exome sequencing, RNA-seq, and methylation analyses revealed that the overexpressed HMGA2 (the fold change between DD and WD samples was 7.3) was responsible for the increased RD-HIST level, leading to aberrant cell proliferation. Therefore, HMGA2-mediated elevation of RD-HISTs were crucial events in determining the aggressiveness of DDLPS, which may serve as a biomarker for prognosis prediction for liposarcoma patients.

18.
Blood ; 138(21): 2117-2128, 2021 11 25.
Article En | MEDLINE | ID: mdl-34115847

Shwachman-Diamond syndrome (SDS; OMIM #260400) is caused by variants in SBDS (Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an important role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-induced SDS remains incompletely understood. Here we present 3 unrelated Korean SDS patients who carry biallelic pathogenic variants in EFL1 with biased allele frequencies, resulting from a bone marrow-specific somatic uniparental disomy in chromosome 15. The recombination events generated cells that were homozygous for the relatively milder variant, allowing for the evasion of catastrophic physiologic consequences. However, the milder EFL1 variant was still solely able to impair 80S ribosome assembly and induce SDS features in cell line and animal models. The loss of EFL1 resulted in a pronounced inhibition of terminal oligopyrimidine element-containing ribosomal protein transcript 80S assembly. Therefore, we propose a more accurate pathogenesis mechanism of EFL1 dysfunction that eventually leads to aberrant translational control and ribosomopathy.


Peptide Elongation Factors/genetics , Ribonucleoprotein, U5 Small Nuclear/genetics , Shwachman-Diamond Syndrome/genetics , Uniparental Disomy/genetics , Adult , Alleles , Animals , Child , Child, Preschool , Female , Humans , Male , Mice, Inbred C57BL , Models, Molecular , Point Mutation
19.
Hum Genome Var ; 8(1): 17, 2021 May 07.
Article En | MEDLINE | ID: mdl-33963180

An 11-year-old Korean boy presented with short stature, hip dysplasia, radial head dislocation, carpal coalition, genu valgum, and fixed patellar dislocation and was clinically diagnosed with Steel syndrome. Scrutinizing the trio whole-exome sequencing data revealed novel compound heterozygous mutations of COL27A1 (c.[4229_4233dup]; [3718_5436del], p.[Gly1412Argfs*157];[Gly1240_Lys1812del]) in the proband, which were inherited from heterozygous parents. The maternal mutation was a large deletion encompassing exons 38-60, which was challenging to detect.

20.
Nat Commun ; 12(1): 2558, 2021 05 07.
Article En | MEDLINE | ID: mdl-33963192

GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.


Gene Expression Regulation, Developmental/genetics , Induced Pluripotent Stem Cells/metabolism , Neurodevelopmental Disorders/metabolism , Neurons/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , SMN Complex Proteins/genetics , Alleles , Amino Acid Sequence , Animals , Child, Preschool , Developmental Disabilities/genetics , Drosophila/genetics , Drosophila/growth & development , Female , Gene Knockdown Techniques , Gene Ontology , HEK293 Cells , Humans , Loss of Function Mutation , Male , Muscle Hypotonia/genetics , Myoclonic Cerebellar Dyssynergia/genetics , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Pedigree , Polymorphism, Single Nucleotide , RNA-Seq , Ribonucleoproteins, Small Nuclear/genetics , Rigor Mortis/genetics , SMN Complex Proteins/metabolism
...