Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Infect Dis ; 130 Suppl 1: S30-S33, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898428

RESUMEN

The COVID-19 pandemic has significantly disrupted global tuberculosis (TB) control efforts. The mobilization of healthcare resources and personnel to combat the pandemic, and the nationwide lockdown measures resulted in an accumulation of a large number of undiagnosed TB cases. Exacerbating the situation, recent meta-analyses showed that COVID-19-induced diabetes mellitus (DM) is on the increase. DM is an established risk factor for TB disease and worsens outcomes. Patients with concurrent DM and TB had more lung cavitary lesions, and are more likely to fail TB treatment and suffer disease relapse. This may pose a significant challenge to TB control in low- and middle-income countries where a high TB burden is found. There is a need to step up the efforts to end the TB epidemic, which include increased screening for DM among patients with TB, optimizing glycemic control among patients with TB-DM, and intensifying TB-DM research to improve treatment outcomes for patients with TB-DM.


Asunto(s)
COVID-19 , Diabetes Mellitus , Tuberculosis Miliar , Humanos , Pandemias , Control de Enfermedades Transmisibles , COVID-19/epidemiología , Diabetes Mellitus/epidemiología , Diabetes Mellitus/diagnóstico
2.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34400471

RESUMEN

Gene expression analysis in individual neuronal types helps in understanding brain function. Genetic methods expressing fluorescent proteins are widely used to label specific neuronal populations. However, because cell type specificity of genetic labeling is often limited, it is advantageous to combine genetic labeling with additional methods to select specific cell/neuronal types. Laser capture microdissection is one of such techniques with which one can select a specific cell/neuronal population based on morphological observation. However, a major issue is the disappearance of fluorescence signals during the tissue processing that is required for high-quality sample preparation. Here, we developed a simple, novel method in which fluorescence signals are preserved. We use genetic labeling with fluorescence proteins fused to transmembrane proteins, which shows highly stable fluorescence retention and allows for the selection of fluorescent neurons/cells based on morphology. Using this method in mice, we laser-captured neuronal somata and successfully isolated RNA. We determined that ∼100 cells are sufficient to obtain a sample required for downstream applications such as quantitative PCR. Capability to specifically microdissect targeted neurons was demonstrated by an ∼10-fold increase in mRNA for fluorescent proteins in visually identified neurons expressing the fluorescent proteins compared with neighboring cells not expressing it. We applied this method to validate virus-mediated single-cell knockout, which showed up to 92% reduction in knocked-out gene RNA compared with wild-type neurons. This method using fluorescent proteins fused to transmembrane proteins provides a new, simple solution to perform gene expression analysis in sparsely labeled neuronal/cellular populations, which is especially advantageous when genetic labeling has limited specificity.


Asunto(s)
Neuronas , ARN , Animales , Técnicas Genéticas , Humanos , Captura por Microdisección con Láser , Ratones , ARN Mensajero
3.
eNeuro ; 8(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34266965

RESUMEN

The NMDA receptors are a type of glutamate receptors, which is involved in neuronal function, plasticity and development in the mammalian brain. However, how the NMDA receptors contribute to adult neurogenesis and development of the dentate gyrus is unclear. In this study, we investigate this question by examining a region-specific knock-out mouse line that lacks the NR1 gene, which encodes the essential subunit of the NMDA receptors, in granule cells of the dentate gyrus (DG-NR1KO mice). We found that the survival of newly-generated granule cells, cell proliferation and the size of the granule cell layer are significantly reduced in the dorsal dentate gyrus of adult DG-NR1KO mice. Our results also show a significant reduction in the number of immature neurons and in the volume of the granule cell layer, starting from three weeks of postnatal age. DG-NR1KO mice also showed impairment in the expression of an immediate early gene, Arc, and behavior during the novelty-suppressed feeding and open field test. These results suggest that the NMDA receptors in granule cells have a role in adult neurogenesis in the adult brain and contributes to the normal development of the dentate gyrus.


Asunto(s)
Células-Madre Neurales , Receptores de N-Metil-D-Aspartato , Animales , Giro Dentado/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA