Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Article En | MEDLINE | ID: mdl-37972272

Accurate taxonomic classification of samples from infected host material is essential for disease diagnostics and genome analyses. Despite the importance, diagnosis of fungal pathogens causing banana leaf diseases remains challenging. Foliar diseases of bananas are mainly caused by 3 Pseudocercospora species, of which the most predominant causal agent is Pseudocercospora fijiensis. Here, we sequenced and assembled four fungal isolates obtained from necrotic banana leaves in Bohol (Philippines) and obtained a high-quality genome assembly for one of these isolates. The samples were initially identified as P. fijiensis using PCR diagnostics; however, the assembly size was consistently 30 Mb smaller than expected. Based on the internal transcribed spacer (ITS) sequences, we identified the samples as Zasmidium syzygii (98.7% identity). The high-quality Zasmidium syzygii assembly is 42.5 Mb in size, comprising 16 contigs, of which 11 are most likely complete chromosomes. The genome contains 98.6% of the expected single-copy BUSCO genes and contains 14,789 genes and 10.3% repeats. The 3 short-read assemblies are less continuous but have similar genome sizes (40.4-42.4 Mb) and contain between 96.5 and 98.4% BUSCO genes. All 4 isolates have identical ITS sequences and are distinct from Zasmidium isolates that were previously sampled from banana leaves. We thus report the first continuous genome assembly of a member of the Zasmidium genus, forming an essential resource for further analysis to enhance our understanding of the diversity of pathogenic fungal isolates as well as fungal diversity.


Ascomycota , Musa , Musa/genetics , Base Sequence , Chromosomes , Plant Leaves/genetics
2.
Pest Manag Sci ; 77(7): 3273-3288, 2021 Jul.
Article En | MEDLINE | ID: mdl-33764651

BACKGROUND: Pseudocercospora fijiensis is the causal agent of the black leaf streak disease (BLSD) of banana. Bananas are important global export commodities and a major staple food. Their susceptibility to BLSD pushes disease management towards excessive fungicide use, largely relying on multisite inhibitors and sterol demethylation inhibitors (DMIs). These fungicides are ubiquitous in plant disease control, targeting the CYP51 enzyme. We examined sensitivity to DMIs in P. fijiensis field isolates collected from various major banana production zones in Colombia, Costa Rica, Dominican Republic, Ecuador, the Philippines, Guadalupe, Martinique and Cameroon and determined the underlying genetic reasons for the observed phenotypes. RESULTS: We observed a continuous range of sensitivity towards the DMI fungicides difenoconazole, epoxiconazole and propiconazole with clear cross-sensitivity. Sequence analyses of PfCYP51 in 266 isolates showed 28 independent amino acid substitutions, nine of which correlated with reduced sensitivity to DMIs. In addition to the mutations, we observed up to six insertions in the Pfcyp51 promoter. Such promoter insertions contain repeated elements with a palindromic core and correlate with the enhanced expression of Pfcyp51 and hence with reduced DMI sensitivity. Wild-type isolates from unsprayed bananas fields did not contain any promoter insertions. CONCLUSION: The presented data significantly contribute to understanding of the evolution and global distribution of DMI resistance mechanisms in P. fijiensis field populations and facilitate the prediction of different DMI efficacy. The overall reduced DMI sensitivity calls for the deployment of a wider range of solutions for sustainable control of this major banana disease. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Fungicides, Industrial , Musa , Ascomycota , Cameroon , Colombia , Costa Rica , Fungicides, Industrial/pharmacology , Philippines
3.
PLoS One ; 14(10): e0223858, 2019.
Article En | MEDLINE | ID: mdl-31622393

The haploid fungus Pseudocercospora fijiensis causes black Sigatoka in banana and is chiefly controlled by extensive fungicide applications, threatening occupational health and the environment. The 14α-Demethylase Inhibitors (DMIs) are important disease control fungicides, but they lose sensitivity in a rather gradual fashion, suggesting an underlying polygenic genetic mechanism. In spite of this, evidence found thus far suggests that P. fijiensis cyp51 gene mutations are the main responsible factor for sensitivity loss in the field. To better understand the mechanisms involved in DMI resistance, in this study we constructed a genetic map using DArTseq markers on two F1 populations generated by crossing two different DMI resistant strains with a sensitive strain. Analysis of the inheritance of DMI resistance in the F1 populations revealed two major and discrete DMI-sensitivity groups. This is an indicative of a single major responsible gene. Using the DMI-sensitivity scorings of both F1 populations and the generation of genetic linkage maps, the sensitivity causal factor was located in a single genetic region. Full agreement was found for genetic markers in either population, underlining the robustness of the approach. The two maps indicated a similar genetic region where the Pfcyp51 gene is found. Sequence analyses of the Pfcyp51 gene of the F1 populations also revealed a matching bimodal distribution with the DMI resistant. Amino acid substitutions in P. fijiensis CYP51 enzyme of the resistant progeny were previously correlated with the loss of DMI sensitivity. In addition, the resistant progeny inherited a Pfcyp51 gene promoter insertion, composed of a repeat element with a palindromic core, also previously correlated with increased gene expression. This genetic approach confirms that Pfcyp51 is the single explanatory gene for reduced sensitivity to DMI fungicides in the analysed P. fijiensis strains. Our study is the first genetic analysis to map the underlying genetic factors for reduced DMI efficacy.


14-alpha Demethylase Inhibitors/metabolism , Ascomycota/genetics , Fungal Proteins/metabolism , Fungicides, Industrial/metabolism , Musa/microbiology , Sterol 14-Demethylase/metabolism , 14-alpha Demethylase Inhibitors/pharmacology , Ascomycota/drug effects , Ascomycota/isolation & purification , Drug Resistance, Fungal/genetics , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/genetics , Fungicides, Industrial/pharmacology , Genetic Linkage , Musa/metabolism , Mutation , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Promoter Regions, Genetic , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/genetics
5.
Mol Plant Pathol ; 19(6): 1491-1503, 2018 06.
Article En | MEDLINE | ID: mdl-29105293

The Dothideomycete Pseudocercospora fijiensis, previously Mycosphaerella fijiensis, is the causal agent of black Sigatoka, one of the most destructive diseases of bananas and plantains. Disease management depends on fungicide applications, with a major contribution from sterol demethylation-inhibitors (DMIs). The continued use of DMIs places considerable selection pressure on natural P. fijiensis populations, enabling the selection of novel genotypes with reduced sensitivity. The hitherto explanatory mechanism for this reduced sensitivity was the presence of non-synonymous point mutations in the target gene Pfcyp51, encoding the sterol 14α-demethylase enzyme. Here, we demonstrate a second mechanism involved in DMI sensitivity of P. fijiensis. We identified a 19-bp element in the wild-type (wt) Pfcyp51 promoter that concatenates in strains with reduced DMI sensitivity. A polymerase chain reaction (PCR) assay identified up to six Pfcyp51 promoter repeats in four field populations of P. fijiensis in Costa Rica. We used transformation experiments to swap the wt promoter of a sensitive field isolate with a promoter from a strain with reduced DMI sensitivity that comprised multiple insertions. Comparative in vivo phenotyping showed a functional and proportional up-regulation of Pfcyp51, which consequently decreased DMI sensitivity. Our data demonstrate that point mutations in the Pfcyp51 coding domain, as well as promoter inserts, contribute to the reduced DMI sensitivity of P. fijiensis. These results provide new insights into the importance of the appropriate use of DMIs and the need for the discovery of new molecules for black Sigatoka management.


Ascomycota/pathogenicity , Musa/microbiology , Ascomycota/drug effects , Fungicides, Industrial/pharmacology , Genotype , Plant Diseases/microbiology , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics
...