Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(7): 101124, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37467722

RESUMEN

Abnormal immune responses to the resident gut microbiome can drive inflammatory bowel disease (IBD). Here, we combine high-resolution, culture-based shotgun metagenomic sequencing and analysis with matched host transcriptomics across three intestinal sites (terminal ileum, cecum, rectum) from pediatric IBD (PIBD) patients (n = 58) and matched controls (n = 42) to investigate this relationship. Combining our site-specific approach with bacterial culturing, we establish a cohort-specific bacterial culture collection, comprising 6,620 isolates (170 distinct species, 32 putative novel), cultured from 286 mucosal biopsies. Phylogeny-based, clade-specific metagenomic analysis identifies key, functionally distinct Enterococcus clades associated with either IBD or health. Strain-specific in vitro validation demonstrates differences in cell cytotoxicity and inflammatory signaling in intestinal epithelial cells, consistent with the colonic mucosa-specific response measured in patients with IBD. This demonstrates the importance of strain-specific phenotypes and consideration of anatomical sites in exploring the dysregulated host-bacterial interactions in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/genética , Colon/patología , Biopsia , Mucosa Intestinal/microbiología , Células Epiteliales/patología
2.
Cell Mol Gastroenterol Hepatol ; 14(3): 567-586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35716851

RESUMEN

BACKGROUND & AIMS: Gastric cancer (GC) is strongly linked with chronic gastritis after Helicobacter pylori infection. Toll-like receptors (TLRs) are key innate immune pathogenic sensors that mediate chronic inflammatory and oncogenic responses. Here, we investigated the role of TLR9 in the pathogenesis of GC, including Helicobacter infection. METHODS: TLR9 gene expression was profiled in gastric tissues from GC and gastritis patients and from the spontaneous gp130F/F GC mouse model and chronic H felis-infected wild-type (WT) mice. Gastric pathology was compared in gp130F/F and H felis infection models with or without genetic ablation of Tlr9. The impact of Tlr9 targeting on signaling cascades implicated in inflammation and tumorigenesis (eg, nuclear factor kappa B, extracellular signal-related kinase, and mitogen-activated protein kinase) was assessed in vivo. A direct growth-potentiating effect of TLR9 ligand stimulation on human GC cell lines and gp130F/F primary gastric epithelial cells was also evaluated. RESULTS: TLR9 expression was up-regulated in Helicobacter-infected gastric tissues from GC and gastritis patients and gp130F/F and H felis-infected WT mice. Tlr9 ablation suppressed initiation of tumorigenesis in gp130F/F:Tlr9-/- mice by abrogating gastric inflammation and cellular proliferation. Tlr9-/- mice were also protected against H felis-induced gastric inflammation and hyperplasia. The suppressed gastric pathology upon Tlr9 ablation in both mouse models associated with attenuated nuclear factor kappa B and, to a lesser extent, extracellular signal-related kinase, mitogen-activated protein kinase signaling. TLR9 ligand stimulation of human GC cells and gp130F/F GECs augmented their proliferation and viability. CONCLUSIONS: Our data reveal that TLR9 promotes the initiating stages of GC and facilitates Helicobacter-induced gastric inflammation and hyperplasia, thus providing in vivo evidence for TLR9 as a candidate therapeutic target in GC.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animales , Carcinogénesis/patología , Proliferación Celular , Receptor gp130 de Citocinas/metabolismo , Mucosa Gástrica/patología , Gastritis/patología , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Humanos , Hiperplasia/patología , Inflamación/patología , Ligandos , Ratones , FN-kappa B/metabolismo , Neoplasias Gástricas/patología , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
3.
Aliment Pharmacol Ther ; 56(2): 192-208, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35611465

RESUMEN

BACKGROUND: From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic. AIM: This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development. METHODS: Here we review current and emerging approaches and assess the capabilities and weaknesses of these technologies to provide safe and effective clinical interventions. Key literature was identified through Pubmed searches with the following key words, 'microbiome', 'microbiome biomarkers', 'probiotics', 'prebiotics', 'synbiotics', 'faecal microbiota transplant', 'live biotherapeutics', 'microbiome mimetics' and 'postbiotics'. RESULTS: Improved understanding of the human microbiome and recent technological advances provide an opportunity to develop a new generation of therapies. These therapies will range from dietary interventions, prebiotic supplementations, single probiotic bacterial strains, human donor-derived faecal microbiota transplants, rationally selected combinations of bacterial strains as live biotherapeutics, and the beneficial products or effects produced by bacterial strains, termed microbiome mimetics. CONCLUSIONS: Although methods to identify and refine these therapeutics are continually advancing, the rapid emergence of these new approaches necessitates accepted technological and ethical frameworks for measurement, testing, laboratory practices and clinical translation.


Asunto(s)
Microbiota , Probióticos , Simbióticos , Trasplante de Microbiota Fecal , Humanos , Prebióticos , Probióticos/uso terapéutico
4.
Front Microbiol ; 12: 685935, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239510

RESUMEN

A growing number of experimental and computational approaches are illuminating the "microbial dark matter" and uncovering the integral role of commensal microbes in human health. Through this work, it is now clear that the human microbiome presents great potential as a therapeutic target for a plethora of diseases, including inflammatory bowel disease, diabetes and obesity. The development of more efficacious and targeted treatments relies on identification of causal links between the microbiome and disease; with future progress dependent on effective links between state-of-the-art sequencing approaches, computational analyses and experimental assays. We argue determining causation is essential, which can be attained by generating hypotheses using multi-omic functional analyses and validating these hypotheses in complex, biologically relevant experimental models. In this review we discuss existing analysis and validation methods, and propose best-practice approaches required to enable the next phase of microbiome research.

5.
Methods Mol Biol ; 2283: 191-214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33765319

RESUMEN

Helicobacter pylori infection is highly prevalent in the human population, yet relatively few infected individuals progress to severe forms of disease, such as peptic ulcers and stomach cancer. The severity of disease outcomes to H. pylori infection is, in large part, determined by inflammatory and cellular responses within the gastric niche that, in turn, are the product of various host, bacterial, and environmental factors. It is now clear that the innate immune system, representing the first line of host defense against infection and other foreign aggressions, is critical to the initiation of the immune responses and inflammation observed in H. pylori infection. We propose that by investigating the activation of innate immune signaling pathways and downstream responses, it is possible to better understand the link between Helicobacter infection and the development of severe disease. Here, we describe tools that have been developed to investigate host innate immune responses to Helicobacter infection.


Asunto(s)
Infecciones por Helicobacter/genética , Helicobacter pylori/inmunología , Inmunidad Innata , Animales , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Femenino , Técnicas de Inactivación de Genes , Infecciones por Helicobacter/inmunología , Helicobacter pylori/patogenicidad , Humanos , Macrófagos/inmunología , Masculino , Ratones , Transducción de Señal
6.
Mucosal Immunol ; 14(4): 779-792, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33542492

RESUMEN

The urinary tract consists of the bladder, ureters, and kidneys, and is an essential organ system for filtration and excretion of waste products and maintaining systemic homeostasis. In this capacity, the urinary tract is impacted by its interactions with other mucosal sites, including the genitourinary and gastrointestinal systems. Each of these sites harbors diverse ecosystems of microbes termed the microbiota, that regulates complex interactions with the local and systemic immune system. It remains unclear whether changes in the microbiota and associated metabolites may be a consequence or a driver of urinary tract diseases. Here, we review the current literature, investigating the impact of the microbiota on the urinary tract in homeostasis and disease including urinary stones, acute kidney injury, chronic kidney disease, and urinary tract infection. We propose new avenues for exploration of the urinary microbiome using emerging technology and discuss the potential of microbiome-based medicine for urinary tract conditions.


Asunto(s)
Interacciones Microbiota-Huesped , Interacciones Huésped-Patógeno , Microbiota , Membrana Mucosa/microbiología , Infecciones Urinarias/etiología , Animales , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Retroalimentación Fisiológica , Microbioma Gastrointestinal , Homeostasis , Humanos , Metagenoma , Metagenómica/métodos , Especificidad de Órganos , Infecciones Urinarias/diagnóstico , Infecciones Urinarias/terapia
7.
Gastroenterology ; 159(1): 169-182.e8, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32169428

RESUMEN

BACKGROUND & AIMS: Helicobacter pylori induces strong inflammatory responses that are directed at clearing the infection, but if not controlled, these responses can be harmful to the host. We investigated the immune-regulatory effects of the innate immune molecule, nucleotide-binding oligomerization domain-like receptors (NLR) family CARD domain-containing 5 (NLRC5), in patients and mice with Helicobacter infection. METHODS: We obtained gastric biopsies from 30 patients in Australia. We performed studies with mice that lack NLRC5 in the myeloid linage (Nlrc5møKO) and mice without Nlrc5 gene disruption (controls). Some mice were gavaged with H pylori SS1 or Helicobacter felis; 3 months later, stomachs, spleens, and sera were collected, along with macrophages derived from bone marrow. Human and mouse gastric tissues and mouse macrophages were analyzed by histology, immunohistochemistry, immunoblots, and quantitative polymerase chain reaction. THP-1 cells (human macrophages, controls) and NLRC5-/- THP-1 cells (generated by CRISPR-Cas9 gene editing) were incubated with Helicobacter and gene expression and production of cytokines were analyzed. RESULTS: Levels of NLRC5 messenger RNA were significantly increased in gastric tissues from patients with H pylori infection, compared with patients without infection (P < .01), and correlated with gastritis severity (P < .05). H pylori bacteria induced significantly higher levels of chemokine and cytokine production by NLRC5-/- THP-1 macrophages than by control THP-1 cells (P < .05). After 3 months of infection with H felis, Nlrc5mø-KO mice developed gastric hyperplasia (P < .0001), splenomegaly (P < .0001), and increased serum antibody titers (P < .01), whereas control mice did not. Nlrc5mø-KO mice with chronic H felis infection had increased numbers of gastric B-cell follicles expressing CD19 (P < .0001); these follicles had features of mucosa-associated lymphoid tissue lymphoma. We identified B-cell-activating factor as a protein that promoted B-cell hyperproliferation in Nlrc5mø-KO mice. CONCLUSIONS: NLRC5 is a negative regulator of gastric inflammation and mucosal lymphoid formation in response to Helicobacter infection. Aberrant NLRC5 signaling in macrophages can promote B-cell lymphomagenesis during chronic Helicobacter infection.


Asunto(s)
Infecciones por Helicobacter/complicaciones , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B de la Zona Marginal/inmunología , Neoplasias Gástricas/inmunología , Animales , Linfocitos B/inmunología , Biopsia , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Mucosa Gástrica/inmunología , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Regulación Neoplásica de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter felis/inmunología , Helicobacter pylori/inmunología , Humanos , Hiperplasia/inmunología , Hiperplasia/microbiología , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Tejido Linfoide/inmunología , Tejido Linfoide/microbiología , Tejido Linfoide/patología , Linfoma de Células B de la Zona Marginal/microbiología , Linfoma de Células B de la Zona Marginal/patología , Masculino , Ratones , Ratones Noqueados , Transducción de Señal/inmunología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Células THP-1
8.
J Vis Exp ; (140)2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30394371

RESUMEN

Helicobacter pylori is a gastric pathogen that is present in half of the global population and is a significant cause of morbidity and mortality in humans. Several mouse models of gastric Helicobacter infection have been developed to study the molecular and cellular mechanisms whereby H. pylori bacteria colonize the stomach of human hosts and cause disease. Herein, we describe protocols to: 1) prepare bacterial suspensions for the in vivo infection of mice via intragastric gavage; 2) determine bacterial colonization levels in mouse gastric tissues, by polymerase chain reaction (PCR) and viable counting; and 3) assess pathological changes, by histology. To establish Helicobacter infection in mice, specific pathogen-free (SPF) animals are first inoculated with suspensions (containing ≥105 colony-forming units, CFUs) of mouse-colonizing strains of either Helicobacter pylori or other gastric Helicobacter spp. from animals, such as Helicobacter felis. At the appropriate time-points post-infection, stomachs are excised and dissected sagittally into two equal tissue fragments, each comprising the antrum and body regions. One of these fragments is then used for either viable counting or DNA extraction, while the other is subjected to histological processing. Bacterial colonization and histopathological changes in the stomach may be assessed routinely in gastric tissue sections stained with Warthin-Starry, Giemsa or Haematoxylin and Eosin (H&E) stains, as appropriate. Additional immunological analyses may also be undertaken by immunohistochemistry or immunofluorescence on mouse gastric tissue sections. The protocols described below are specifically designed to enable the assessment in mice of gastric pathologies resembling those in human-related H. pylori diseases, including inflammation, gland atrophy and lymphoid follicle formation. The inoculum preparation and intragastric gavage protocols may also be adapted to study the pathogenesis of other enteric human pathogens that colonize mice, such as Salmonella Typhimurium or Citrobacter rodentium.


Asunto(s)
Mucosa Gástrica/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
9.
Microbes Infect ; 19(9-10): 449-458, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690082

RESUMEN

Persistent stomach infection with Helicobacter pylori causes chronic mucosal inflammation (gastritis), which is widely recognized as an essential precursor to gastric cancer. The IL-1 interleukin family cytokines IL-1ß and IL-18 have emerged as central mediators of mucosal inflammation. Here, we review the regulation and functions of these cytokines in H. pylori-induced inflammation and carcinogenesis.


Asunto(s)
Citocinas/metabolismo , Infecciones por Helicobacter/metabolismo , Inflamasomas/metabolismo , Citocinas/genética , Regulación de la Expresión Génica/fisiología , Infecciones por Helicobacter/inmunología , Helicobacter pylori , Humanos , Neoplasias Gástricas/etiología
10.
Gut Pathog ; 8: 61, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27895717

RESUMEN

BACKGROUND: Mouse infection studies have shown that interferon-γ (IFN-γ), a T helper 1 (Th1) cytokine, is required for the development of severe pathology induced by chronic Helicobacter infection. This finding is largely based on studies performed using mice that have polarised Th1 responses i.e. C57BL/6 animals. The current work aims to investigate the role of IFN-γ in Helicobacter-induced inflammation in BALB/c mice which have Th2-polarised immune responses. RESULTS: At 7 months post-infection with Helicobacter felis, IFN-γ deficiency in BALB/c mice had no significant effect on H. felis colonisation levels in the gastric mucosa, nor on humoral responses, or gastritis severity. Ifng-/- animals with chronic H. felis infection did, however, develop significantly fewer lymphoid follicle lesions, as well as increased IL-4 splenocyte responses, when compared with infected Ifng+/+ mice (P = 0.015 and P = 0.0004, respectively). CONCLUSIONS: The work shows that in mice on a BALB/c background, IFN-γ is not required for bacterial clearance, antibody responses, nor gastric inflammation. Conversely, IFN-γ appears to play a role in the development of gastric lymphoid follicles, which are precursor lesions to mucosa-associated lymphoid tissue (MALT) lymphoma. This study highlights the importance of mouse host background on the susceptibility to Helicobacter-induced pathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA