Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682303

RESUMEN

This paper investigates the effect of altering the protein expression dynamics of the bHLH transcription factor Her6 at the single-cell level in the embryonic zebrafish telencephalon. Using a homozygote endogenous Her6:Venus reporter and 4D single-cell tracking, we show that Her6 oscillates in neural telencephalic progenitors and that the fusion of protein destabilisation (PEST) domain alters its expression dynamics, causing most cells to downregulate Her6 prematurely. However, counterintuitively, oscillatory cells increase, with some expressing Her6 at high levels, resulting in increased heterogeneity of Her6 expression in the population. These tissue-level changes appear to be an emergent property of coupling between single-cells, as revealed by experimentally disrupting Notch signalling and by computationally modelling alterations in Her6 protein stability. Despite the profound differences in the single-cell Her6 dynamics, the size of the telencephalon is only transiently altered and differentiation markers do not exhibit significant differences early on; however, a small increase is observed at later developmental stages. Our study suggests that cell coupling provides a compensation strategy, whereby an almost normal phenotype is maintained even though single-cell gene expression dynamics are abnormal, granting phenotypic robustness.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Fenotipo , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica , Telencéfalo/metabolismo , Telencéfalo/embriología , Análisis de la Célula Individual , Transducción de Señal , Receptores Notch/metabolismo , Receptores Notch/genética , Diferenciación Celular
2.
iScience ; 26(3): 106147, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36843843

RESUMEN

Sustained elevated levels of reactive oxygen species (ROS) have been shown to be essential for regeneration in many organisms. This has been shown primarily via the use of pharmacological inhibitors targeting the family of NADPH oxidases (NOXes). To identify the specific NOXes involved in ROS production during adult caudal fin regeneration in zebrafish, we generated nox mutants for duox, nox5 and cyba (a key subunit of NOXes 1-4) and crossed these lines with a transgenic line ubiquitously expressing HyPer, which permits the measurement of ROS levels. Homozygous duox mutants had the greatest effect on ROS levels and rate of fin regeneration among the single mutants. However, duox:cyba double mutants showed a greater effect on fin regeneration than the single duox mutants, suggesting that Nox1-4 also play a role during regeneration. This work also serendipitously found that ROS levels in amputated adult zebrafish fins oscillate with a circadian rhythm.

3.
Biol Open ; 8(2)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30700401

RESUMEN

Thyroid dyshormonogenesis is a leading cause of congenital hypothyroidism, a highly prevalent but treatable condition. Thyroid hormone (TH) synthesis is dependent on the formation of reactive oxygen species (ROS). In humans, the primary sources for ROS production during thyroid hormone synthesis are the NADPH oxidases DUOX1 and DUOX2. Indeed, mutations in DUOX1 and DUOX2 have been linked with congenital hypothyroidism. Unlike humans, zebrafish has a single orthologue for DUOX1 and DUOX2 In this study, we investigated the phenotypes associated with two nonsense mutant alleles, sa9892 and sa13017, of the single duox gene in zebrafish. Both alleles gave rise to readily observable phenotypes reminiscent of congenital hypothyroidism, from the larval stages through to adulthood. By using various methods to examine external and internal phenotypes, we discovered a strong correlation between TH synthesis and duox function, beginning from an early larval stage, when T4 levels are already noticeably absent in the mutants. Loss of T4 production resulted in growth retardation, pigmentation defects, ragged fins, thyroid hyperplasia/external goiter and infertility. Remarkably, all of these defects associated with chronic congenital hypothyroidism could be rescued with T4 treatment, even when initiated when the fish had already reached adulthood. Our work suggests that these zebrafish duox mutants may provide a powerful model to understand the aetiology of untreated and treated congenital hypothyroidism even in advanced stages of development.This article has an associated First Person interview with the first author of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA